Metamath Proof Explorer


Theorem peano2ons

Description: The successor of a surreal ordinal is a surreal ordinal. (Contributed by Scott Fenton, 22-Aug-2025)

Ref Expression
Assertion peano2ons ( 𝐴 ∈ Ons → ( 𝐴 +s 1s ) ∈ Ons )

Proof

Step Hyp Ref Expression
1 1ons 1s ∈ Ons
2 onaddscl ( ( 𝐴 ∈ Ons ∧ 1s ∈ Ons ) → ( 𝐴 +s 1s ) ∈ Ons )
3 1 2 mpan2 ( 𝐴 ∈ Ons → ( 𝐴 +s 1s ) ∈ Ons )