Description: Surreal one is a surreal ordinal. (Contributed by Scott Fenton, 18-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | 1ons | ⊢ 1s ∈ Ons |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1sno | ⊢ 1s ∈ No | |
2 | right1s | ⊢ ( R ‘ 1s ) = ∅ | |
3 | elons | ⊢ ( 1s ∈ Ons ↔ ( 1s ∈ No ∧ ( R ‘ 1s ) = ∅ ) ) | |
4 | 1 2 3 | mpbir2an | ⊢ 1s ∈ Ons |