Metamath Proof Explorer


Theorem 1ons

Description: Surreal one is a surreal ordinal. (Contributed by Scott Fenton, 18-Mar-2025)

Ref Expression
Assertion 1ons 1s ∈ Ons

Proof

Step Hyp Ref Expression
1 1sno 1s No
2 right1s ( R ‘ 1s ) = ∅
3 elons ( 1s ∈ Ons ↔ ( 1s No ∧ ( R ‘ 1s ) = ∅ ) )
4 1 2 3 mpbir2an 1s ∈ Ons