Metamath Proof Explorer


Theorem lrrecval

Description: The next step in the development of the surreals is to establish induction and recursion across left and right sets. To that end, we are going to develop a relationship R that is founded, partial, and set-like across the surreals. This first theorem just establishes the value of R . (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypothesis lrrec.1
|- R = { <. x , y >. | x e. ( ( _L ` y ) u. ( _R ` y ) ) }
Assertion lrrecval
|- ( ( A e. No /\ B e. No ) -> ( A R B <-> A e. ( ( _L ` B ) u. ( _R ` B ) ) ) )

Proof

Step Hyp Ref Expression
1 lrrec.1
 |-  R = { <. x , y >. | x e. ( ( _L ` y ) u. ( _R ` y ) ) }
2 eleq1
 |-  ( x = A -> ( x e. ( ( _L ` y ) u. ( _R ` y ) ) <-> A e. ( ( _L ` y ) u. ( _R ` y ) ) ) )
3 fveq2
 |-  ( y = B -> ( _L ` y ) = ( _L ` B ) )
4 fveq2
 |-  ( y = B -> ( _R ` y ) = ( _R ` B ) )
5 3 4 uneq12d
 |-  ( y = B -> ( ( _L ` y ) u. ( _R ` y ) ) = ( ( _L ` B ) u. ( _R ` B ) ) )
6 5 eleq2d
 |-  ( y = B -> ( A e. ( ( _L ` y ) u. ( _R ` y ) ) <-> A e. ( ( _L ` B ) u. ( _R ` B ) ) ) )
7 2 6 1 brabg
 |-  ( ( A e. No /\ B e. No ) -> ( A R B <-> A e. ( ( _L ` B ) u. ( _R ` B ) ) ) )