Metamath Proof Explorer


Theorem lrrecpo

Description: Now, we establish that R is a partial ordering on No . (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypothesis lrrec.1 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) }
Assertion lrrecpo 𝑅 Po No

Proof

Step Hyp Ref Expression
1 lrrec.1 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) }
2 bdayelon ( bday 𝑎 ) ∈ On
3 2 onirri ¬ ( bday 𝑎 ) ∈ ( bday 𝑎 )
4 1 lrrecval2 ( ( 𝑎 No 𝑎 No ) → ( 𝑎 𝑅 𝑎 ↔ ( bday 𝑎 ) ∈ ( bday 𝑎 ) ) )
5 4 anidms ( 𝑎 No → ( 𝑎 𝑅 𝑎 ↔ ( bday 𝑎 ) ∈ ( bday 𝑎 ) ) )
6 3 5 mtbiri ( 𝑎 No → ¬ 𝑎 𝑅 𝑎 )
7 6 adantl ( ( ⊤ ∧ 𝑎 No ) → ¬ 𝑎 𝑅 𝑎 )
8 bdayelon ( bday 𝑐 ) ∈ On
9 ontr1 ( ( bday 𝑐 ) ∈ On → ( ( ( bday 𝑎 ) ∈ ( bday 𝑏 ) ∧ ( bday 𝑏 ) ∈ ( bday 𝑐 ) ) → ( bday 𝑎 ) ∈ ( bday 𝑐 ) ) )
10 8 9 ax-mp ( ( ( bday 𝑎 ) ∈ ( bday 𝑏 ) ∧ ( bday 𝑏 ) ∈ ( bday 𝑐 ) ) → ( bday 𝑎 ) ∈ ( bday 𝑐 ) )
11 1 lrrecval2 ( ( 𝑎 No 𝑏 No ) → ( 𝑎 𝑅 𝑏 ↔ ( bday 𝑎 ) ∈ ( bday 𝑏 ) ) )
12 11 3adant3 ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( 𝑎 𝑅 𝑏 ↔ ( bday 𝑎 ) ∈ ( bday 𝑏 ) ) )
13 1 lrrecval2 ( ( 𝑏 No 𝑐 No ) → ( 𝑏 𝑅 𝑐 ↔ ( bday 𝑏 ) ∈ ( bday 𝑐 ) ) )
14 13 3adant1 ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( 𝑏 𝑅 𝑐 ↔ ( bday 𝑏 ) ∈ ( bday 𝑐 ) ) )
15 12 14 anbi12d ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ( 𝑎 𝑅 𝑏𝑏 𝑅 𝑐 ) ↔ ( ( bday 𝑎 ) ∈ ( bday 𝑏 ) ∧ ( bday 𝑏 ) ∈ ( bday 𝑐 ) ) ) )
16 1 lrrecval2 ( ( 𝑎 No 𝑐 No ) → ( 𝑎 𝑅 𝑐 ↔ ( bday 𝑎 ) ∈ ( bday 𝑐 ) ) )
17 16 3adant2 ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( 𝑎 𝑅 𝑐 ↔ ( bday 𝑎 ) ∈ ( bday 𝑐 ) ) )
18 15 17 imbi12d ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ( ( 𝑎 𝑅 𝑏𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) ↔ ( ( ( bday 𝑎 ) ∈ ( bday 𝑏 ) ∧ ( bday 𝑏 ) ∈ ( bday 𝑐 ) ) → ( bday 𝑎 ) ∈ ( bday 𝑐 ) ) ) )
19 10 18 mpbiri ( ( 𝑎 No 𝑏 No 𝑐 No ) → ( ( 𝑎 𝑅 𝑏𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) )
20 19 adantl ( ( ⊤ ∧ ( 𝑎 No 𝑏 No 𝑐 No ) ) → ( ( 𝑎 𝑅 𝑏𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) )
21 7 20 ispod ( ⊤ → 𝑅 Po No )
22 21 mptru 𝑅 Po No