Step |
Hyp |
Ref |
Expression |
1 |
|
lrrec.1 |
⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } |
2 |
|
bdayelon |
⊢ ( bday ‘ 𝑎 ) ∈ On |
3 |
2
|
onirri |
⊢ ¬ ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝑎 ) |
4 |
1
|
lrrecval2 |
⊢ ( ( 𝑎 ∈ No ∧ 𝑎 ∈ No ) → ( 𝑎 𝑅 𝑎 ↔ ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝑎 ) ) ) |
5 |
4
|
anidms |
⊢ ( 𝑎 ∈ No → ( 𝑎 𝑅 𝑎 ↔ ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝑎 ) ) ) |
6 |
3 5
|
mtbiri |
⊢ ( 𝑎 ∈ No → ¬ 𝑎 𝑅 𝑎 ) |
7 |
6
|
adantl |
⊢ ( ( ⊤ ∧ 𝑎 ∈ No ) → ¬ 𝑎 𝑅 𝑎 ) |
8 |
|
bdayelon |
⊢ ( bday ‘ 𝑐 ) ∈ On |
9 |
|
ontr1 |
⊢ ( ( bday ‘ 𝑐 ) ∈ On → ( ( ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝑏 ) ∧ ( bday ‘ 𝑏 ) ∈ ( bday ‘ 𝑐 ) ) → ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝑐 ) ) ) |
10 |
8 9
|
ax-mp |
⊢ ( ( ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝑏 ) ∧ ( bday ‘ 𝑏 ) ∈ ( bday ‘ 𝑐 ) ) → ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝑐 ) ) |
11 |
1
|
lrrecval2 |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ) → ( 𝑎 𝑅 𝑏 ↔ ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝑏 ) ) ) |
12 |
11
|
3adant3 |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( 𝑎 𝑅 𝑏 ↔ ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝑏 ) ) ) |
13 |
1
|
lrrecval2 |
⊢ ( ( 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( 𝑏 𝑅 𝑐 ↔ ( bday ‘ 𝑏 ) ∈ ( bday ‘ 𝑐 ) ) ) |
14 |
13
|
3adant1 |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( 𝑏 𝑅 𝑐 ↔ ( bday ‘ 𝑏 ) ∈ ( bday ‘ 𝑐 ) ) ) |
15 |
12 14
|
anbi12d |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) ↔ ( ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝑏 ) ∧ ( bday ‘ 𝑏 ) ∈ ( bday ‘ 𝑐 ) ) ) ) |
16 |
1
|
lrrecval2 |
⊢ ( ( 𝑎 ∈ No ∧ 𝑐 ∈ No ) → ( 𝑎 𝑅 𝑐 ↔ ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝑐 ) ) ) |
17 |
16
|
3adant2 |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( 𝑎 𝑅 𝑐 ↔ ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝑐 ) ) ) |
18 |
15 17
|
imbi12d |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ( ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) ↔ ( ( ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝑏 ) ∧ ( bday ‘ 𝑏 ) ∈ ( bday ‘ 𝑐 ) ) → ( bday ‘ 𝑎 ) ∈ ( bday ‘ 𝑐 ) ) ) ) |
19 |
10 18
|
mpbiri |
⊢ ( ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) → ( ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) ) |
20 |
19
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑎 ∈ No ∧ 𝑏 ∈ No ∧ 𝑐 ∈ No ) ) → ( ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) ) |
21 |
7 20
|
ispod |
⊢ ( ⊤ → 𝑅 Po No ) |
22 |
21
|
mptru |
⊢ 𝑅 Po No |