Metamath Proof Explorer


Theorem lrrecpo

Description: Now, we establish that R is a partial ordering on No . (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypothesis lrrec.1 R = x y | x L y R y
Assertion lrrecpo R Po No

Proof

Step Hyp Ref Expression
1 lrrec.1 R = x y | x L y R y
2 bdayelon bday a On
3 2 onirri ¬ bday a bday a
4 1 lrrecval2 a No a No a R a bday a bday a
5 4 anidms a No a R a bday a bday a
6 3 5 mtbiri a No ¬ a R a
7 6 adantl a No ¬ a R a
8 bdayelon bday c On
9 ontr1 bday c On bday a bday b bday b bday c bday a bday c
10 8 9 ax-mp bday a bday b bday b bday c bday a bday c
11 1 lrrecval2 a No b No a R b bday a bday b
12 11 3adant3 a No b No c No a R b bday a bday b
13 1 lrrecval2 b No c No b R c bday b bday c
14 13 3adant1 a No b No c No b R c bday b bday c
15 12 14 anbi12d a No b No c No a R b b R c bday a bday b bday b bday c
16 1 lrrecval2 a No c No a R c bday a bday c
17 16 3adant2 a No b No c No a R c bday a bday c
18 15 17 imbi12d a No b No c No a R b b R c a R c bday a bday b bday b bday c bday a bday c
19 10 18 mpbiri a No b No c No a R b b R c a R c
20 19 adantl a No b No c No a R b b R c a R c
21 7 20 ispod R Po No
22 21 mptru R Po No