| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lrrec.1 | ⊢ 𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } | 
						
							| 2 |  | dfpred3g | ⊢ ( 𝐴  ∈   No   →  Pred ( 𝑅 ,   No  ,  𝐴 )  =  { 𝑏  ∈   No   ∣  𝑏 𝑅 𝐴 } ) | 
						
							| 3 | 1 | lrrecval | ⊢ ( ( 𝑏  ∈   No   ∧  𝐴  ∈   No  )  →  ( 𝑏 𝑅 𝐴  ↔  𝑏  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) ) | 
						
							| 4 | 3 | ancoms | ⊢ ( ( 𝐴  ∈   No   ∧  𝑏  ∈   No  )  →  ( 𝑏 𝑅 𝐴  ↔  𝑏  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) ) | 
						
							| 5 | 4 | rabbidva | ⊢ ( 𝐴  ∈   No   →  { 𝑏  ∈   No   ∣  𝑏 𝑅 𝐴 }  =  { 𝑏  ∈   No   ∣  𝑏  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) } ) | 
						
							| 6 |  | dfrab2 | ⊢ { 𝑏  ∈   No   ∣  𝑏  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) }  =  ( { 𝑏  ∣  𝑏  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) }  ∩   No  ) | 
						
							| 7 |  | abid2 | ⊢ { 𝑏  ∣  𝑏  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) }  =  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) | 
						
							| 8 | 7 | ineq1i | ⊢ ( { 𝑏  ∣  𝑏  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) }  ∩   No  )  =  ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∩   No  ) | 
						
							| 9 | 6 8 | eqtri | ⊢ { 𝑏  ∈   No   ∣  𝑏  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) }  =  ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∩   No  ) | 
						
							| 10 | 5 9 | eqtrdi | ⊢ ( 𝐴  ∈   No   →  { 𝑏  ∈   No   ∣  𝑏 𝑅 𝐴 }  =  ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∩   No  ) ) | 
						
							| 11 |  | leftssno | ⊢ (  L  ‘ 𝐴 )  ⊆   No | 
						
							| 12 | 11 | a1i | ⊢ ( 𝐴  ∈   No   →  (  L  ‘ 𝐴 )  ⊆   No  ) | 
						
							| 13 |  | rightssno | ⊢ (  R  ‘ 𝐴 )  ⊆   No | 
						
							| 14 | 13 | a1i | ⊢ ( 𝐴  ∈   No   →  (  R  ‘ 𝐴 )  ⊆   No  ) | 
						
							| 15 | 12 14 | unssd | ⊢ ( 𝐴  ∈   No   →  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ⊆   No  ) | 
						
							| 16 |  | dfss2 | ⊢ ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ⊆   No   ↔  ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∩   No  )  =  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) | 
						
							| 17 | 15 16 | sylib | ⊢ ( 𝐴  ∈   No   →  ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∩   No  )  =  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) | 
						
							| 18 | 2 10 17 | 3eqtrd | ⊢ ( 𝐴  ∈   No   →  Pred ( 𝑅 ,   No  ,  𝐴 )  =  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) |