| Step | Hyp | Ref | Expression | 
						
							| 1 |  | noinds.1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | noinds.2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | noinds.3 | ⊢ ( 𝑥  ∈   No   →  ( ∀ 𝑦  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) 𝜓  →  𝜑 ) ) | 
						
							| 4 |  | eqid | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  𝑎  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) }  =  { 〈 𝑎 ,  𝑏 〉  ∣  𝑎  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) } | 
						
							| 5 | 4 | lrrecfr | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  𝑎  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) }  Fr   No | 
						
							| 6 | 4 | lrrecpo | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  𝑎  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) }  Po   No | 
						
							| 7 | 4 | lrrecse | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  𝑎  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) }  Se   No | 
						
							| 8 | 5 6 7 | 3pm3.2i | ⊢ ( { 〈 𝑎 ,  𝑏 〉  ∣  𝑎  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) }  Fr   No   ∧  { 〈 𝑎 ,  𝑏 〉  ∣  𝑎  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) }  Po   No   ∧  { 〈 𝑎 ,  𝑏 〉  ∣  𝑎  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) }  Se   No  ) | 
						
							| 9 | 4 | lrrecpred | ⊢ ( 𝑥  ∈   No   →  Pred ( { 〈 𝑎 ,  𝑏 〉  ∣  𝑎  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) } ,   No  ,  𝑥 )  =  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ) | 
						
							| 10 | 9 | raleqdv | ⊢ ( 𝑥  ∈   No   →  ( ∀ 𝑦  ∈  Pred ( { 〈 𝑎 ,  𝑏 〉  ∣  𝑎  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) } ,   No  ,  𝑥 ) 𝜓  ↔  ∀ 𝑦  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) 𝜓 ) ) | 
						
							| 11 | 10 3 | sylbid | ⊢ ( 𝑥  ∈   No   →  ( ∀ 𝑦  ∈  Pred ( { 〈 𝑎 ,  𝑏 〉  ∣  𝑎  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) } ,   No  ,  𝑥 ) 𝜓  →  𝜑 ) ) | 
						
							| 12 | 11 1 2 | frpoins3g | ⊢ ( ( ( { 〈 𝑎 ,  𝑏 〉  ∣  𝑎  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) }  Fr   No   ∧  { 〈 𝑎 ,  𝑏 〉  ∣  𝑎  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) }  Po   No   ∧  { 〈 𝑎 ,  𝑏 〉  ∣  𝑎  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) }  Se   No  )  ∧  𝐴  ∈   No  )  →  𝜒 ) | 
						
							| 13 | 8 12 | mpan | ⊢ ( 𝐴  ∈   No   →  𝜒 ) |