Metamath Proof Explorer


Theorem norecfn

Description: Surreal recursion over one variable is a function over the surreals. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypothesis norec.1 𝐹 = norec ( 𝐺 )
Assertion norecfn 𝐹 Fn No

Proof

Step Hyp Ref Expression
1 norec.1 𝐹 = norec ( 𝐺 )
2 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) }
3 2 lrrecfr { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Fr No
4 2 lrrecpo { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Po No
5 2 lrrecse { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Se No
6 df-norec norec ( 𝐺 ) = frecs ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐺 )
7 1 6 eqtri 𝐹 = frecs ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐺 )
8 7 fpr1 ( ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Fr No ∧ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Po No ∧ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Se No ) → 𝐹 Fn No )
9 3 4 5 8 mp3an 𝐹 Fn No