Step |
Hyp |
Ref |
Expression |
1 |
|
norec.1 |
⊢ 𝐹 = norec ( 𝐺 ) |
2 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } |
3 |
2
|
lrrecfr |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Fr No |
4 |
2
|
lrrecpo |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Po No |
5 |
2
|
lrrecse |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Se No |
6 |
3 4 5
|
3pm3.2i |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Fr No ∧ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Po No ∧ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Se No ) |
7 |
|
df-norec |
⊢ norec ( 𝐺 ) = frecs ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐺 ) |
8 |
1 7
|
eqtri |
⊢ 𝐹 = frecs ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐺 ) |
9 |
8
|
fpr2 |
⊢ ( ( ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Fr No ∧ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Po No ∧ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Se No ) ∧ 𝐴 ∈ No ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐴 𝐺 ( 𝐹 ↾ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐴 ) ) ) ) |
10 |
6 9
|
mpan |
⊢ ( 𝐴 ∈ No → ( 𝐹 ‘ 𝐴 ) = ( 𝐴 𝐺 ( 𝐹 ↾ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐴 ) ) ) ) |
11 |
2
|
lrrecpred |
⊢ ( 𝐴 ∈ No → Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐴 ) = ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
12 |
11
|
reseq2d |
⊢ ( 𝐴 ∈ No → ( 𝐹 ↾ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐴 ) ) = ( 𝐹 ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝐴 ∈ No → ( 𝐴 𝐺 ( 𝐹 ↾ Pred ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐴 ) ) ) = ( 𝐴 𝐺 ( 𝐹 ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) ) ) |
14 |
10 13
|
eqtrd |
⊢ ( 𝐴 ∈ No → ( 𝐹 ‘ 𝐴 ) = ( 𝐴 𝐺 ( 𝐹 ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) ) ) |