| Step | Hyp | Ref | Expression | 
						
							| 1 |  | norec.1 | ⊢ 𝐹  =   norec  ( 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } | 
						
							| 3 | 2 | lrrecfr | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) }  Fr   No | 
						
							| 4 | 2 | lrrecpo | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) }  Po   No | 
						
							| 5 | 2 | lrrecse | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) }  Se   No | 
						
							| 6 | 3 4 5 | 3pm3.2i | ⊢ ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) }  Fr   No   ∧  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) }  Po   No   ∧  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) }  Se   No  ) | 
						
							| 7 |  | df-norec | ⊢  norec  ( 𝐺 )  =  frecs ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝐺 ) | 
						
							| 8 | 1 7 | eqtri | ⊢ 𝐹  =  frecs ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝐺 ) | 
						
							| 9 | 8 | fpr2 | ⊢ ( ( ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) }  Fr   No   ∧  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) }  Po   No   ∧  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) }  Se   No  )  ∧  𝐴  ∈   No  )  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝐴 𝐺 ( 𝐹  ↾  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝐴 ) ) ) ) | 
						
							| 10 | 6 9 | mpan | ⊢ ( 𝐴  ∈   No   →  ( 𝐹 ‘ 𝐴 )  =  ( 𝐴 𝐺 ( 𝐹  ↾  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝐴 ) ) ) ) | 
						
							| 11 | 2 | lrrecpred | ⊢ ( 𝐴  ∈   No   →  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝐴 )  =  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) | 
						
							| 12 | 11 | reseq2d | ⊢ ( 𝐴  ∈   No   →  ( 𝐹  ↾  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝐴 ) )  =  ( 𝐹  ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( 𝐴  ∈   No   →  ( 𝐴 𝐺 ( 𝐹  ↾  Pred ( { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ∈  ( (  L  ‘ 𝑦 )  ∪  (  R  ‘ 𝑦 ) ) } ,   No  ,  𝐴 ) ) )  =  ( 𝐴 𝐺 ( 𝐹  ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) ) ) | 
						
							| 14 | 10 13 | eqtrd | ⊢ ( 𝐴  ∈   No   →  ( 𝐹 ‘ 𝐴 )  =  ( 𝐴 𝐺 ( 𝐹  ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) ) ) |