Metamath Proof Explorer


Theorem norecov

Description: Calculate the value of the surreal recursion operation. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypothesis norec.1 𝐹 = norec ( 𝐺 )
Assertion norecov ( 𝐴 No → ( 𝐹𝐴 ) = ( 𝐴 𝐺 ( 𝐹 ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 norec.1 𝐹 = norec ( 𝐺 )
2 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) }
3 2 lrrecfr { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Fr No
4 2 lrrecpo { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Po No
5 2 lrrecse { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Se No
6 3 4 5 3pm3.2i ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Fr No ∧ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Po No ∧ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Se No )
7 df-norec norec ( 𝐺 ) = frecs ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐺 )
8 1 7 eqtri 𝐹 = frecs ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐺 )
9 8 fpr2 ( ( ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Fr No ∧ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Po No ∧ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } Se No ) ∧ 𝐴 No ) → ( 𝐹𝐴 ) = ( 𝐴 𝐺 ( 𝐹 ↾ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐴 ) ) ) )
10 6 9 mpan ( 𝐴 No → ( 𝐹𝐴 ) = ( 𝐴 𝐺 ( 𝐹 ↾ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐴 ) ) ) )
11 2 lrrecpred ( 𝐴 No → Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐴 ) = ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
12 11 reseq2d ( 𝐴 No → ( 𝐹 ↾ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐴 ) ) = ( 𝐹 ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) )
13 12 oveq2d ( 𝐴 No → ( 𝐴 𝐺 ( 𝐹 ↾ Pred ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐴 ) ) ) = ( 𝐴 𝐺 ( 𝐹 ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) ) )
14 10 13 eqtrd ( 𝐴 No → ( 𝐹𝐴 ) = ( 𝐴 𝐺 ( 𝐹 ↾ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) ) )