Metamath Proof Explorer


Definition df-norec

Description: Define the recursion generator for surreal functions of one variable. This generator creates a recursive function of surreals from their value on their left and right sets. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Assertion df-norec norec ( 𝐹 ) = frecs ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐹 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF 𝐹
1 0 cnorec norec ( 𝐹 )
2 vx 𝑥
3 vy 𝑦
4 2 cv 𝑥
5 cleft L
6 3 cv 𝑦
7 6 5 cfv ( L ‘ 𝑦 )
8 cright R
9 6 8 cfv ( R ‘ 𝑦 )
10 7 9 cun ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) )
11 4 10 wcel 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) )
12 11 2 3 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) }
13 csur No
14 13 12 0 cfrecs frecs ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐹 )
15 1 14 wceq norec ( 𝐹 ) = frecs ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) } , No , 𝐹 )