Metamath Proof Explorer


Definition df-norec

Description: Define the recursion generator for surreal functions of one variable. This generator creates a recursive function of surreals from their value on their left and right sets. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Assertion df-norec
|- norec ( F ) = frecs ( { <. x , y >. | x e. ( ( _L ` y ) u. ( _R ` y ) ) } , No , F )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF
 |-  F
1 0 cnorec
 |-  norec ( F )
2 vx
 |-  x
3 vy
 |-  y
4 2 cv
 |-  x
5 cleft
 |-  _L
6 3 cv
 |-  y
7 6 5 cfv
 |-  ( _L ` y )
8 cright
 |-  _R
9 6 8 cfv
 |-  ( _R ` y )
10 7 9 cun
 |-  ( ( _L ` y ) u. ( _R ` y ) )
11 4 10 wcel
 |-  x e. ( ( _L ` y ) u. ( _R ` y ) )
12 11 2 3 copab
 |-  { <. x , y >. | x e. ( ( _L ` y ) u. ( _R ` y ) ) }
13 csur
 |-  No
14 13 12 0 cfrecs
 |-  frecs ( { <. x , y >. | x e. ( ( _L ` y ) u. ( _R ` y ) ) } , No , F )
15 1 14 wceq
 |-  norec ( F ) = frecs ( { <. x , y >. | x e. ( ( _L ` y ) u. ( _R ` y ) ) } , No , F )