Description: Define the recursion generator for surreal functions of one variable. This generator creates a recursive function of surreals from their value on their left and right sets. (Contributed by Scott Fenton, 19-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | df-norec | |- norec ( F ) = frecs ( { <. x , y >. | x e. ( ( _L ` y ) u. ( _R ` y ) ) } , No , F ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cF | |- F |
|
1 | 0 | cnorec | |- norec ( F ) |
2 | vx | |- x |
|
3 | vy | |- y |
|
4 | 2 | cv | |- x |
5 | cleft | |- _L |
|
6 | 3 | cv | |- y |
7 | 6 5 | cfv | |- ( _L ` y ) |
8 | cright | |- _R |
|
9 | 6 8 | cfv | |- ( _R ` y ) |
10 | 7 9 | cun | |- ( ( _L ` y ) u. ( _R ` y ) ) |
11 | 4 10 | wcel | |- x e. ( ( _L ` y ) u. ( _R ` y ) ) |
12 | 11 2 3 | copab | |- { <. x , y >. | x e. ( ( _L ` y ) u. ( _R ` y ) ) } |
13 | csur | |- No |
|
14 | 13 12 0 | cfrecs | |- frecs ( { <. x , y >. | x e. ( ( _L ` y ) u. ( _R ` y ) ) } , No , F ) |
15 | 1 14 | wceq | |- norec ( F ) = frecs ( { <. x , y >. | x e. ( ( _L ` y ) u. ( _R ` y ) ) } , No , F ) |