Metamath Proof Explorer


Theorem noinds

Description: Induction principle for a single surreal. If a property passes from a surreal's left and right sets to the surreal itself, then it holds for all surreals. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypotheses noinds.1 x=yφψ
noinds.2 x=Aφχ
noinds.3 No typesetting found for |- ( x e. No -> ( A. y e. ( ( _Left ` x ) u. ( _Right ` x ) ) ps -> ph ) ) with typecode |-
Assertion noinds ANoχ

Proof

Step Hyp Ref Expression
1 noinds.1 x=yφψ
2 noinds.2 x=Aφχ
3 noinds.3 Could not format ( x e. No -> ( A. y e. ( ( _Left ` x ) u. ( _Right ` x ) ) ps -> ph ) ) : No typesetting found for |- ( x e. No -> ( A. y e. ( ( _Left ` x ) u. ( _Right ` x ) ) ps -> ph ) ) with typecode |-
4 eqid Could not format { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } = { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } : No typesetting found for |- { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } = { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } with typecode |-
5 4 lrrecfr Could not format { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Fr No : No typesetting found for |- { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Fr No with typecode |-
6 4 lrrecpo Could not format { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Po No : No typesetting found for |- { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Po No with typecode |-
7 4 lrrecse Could not format { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Se No : No typesetting found for |- { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Se No with typecode |-
8 5 6 7 3pm3.2i Could not format ( { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Fr No /\ { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Po No /\ { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Se No ) : No typesetting found for |- ( { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Fr No /\ { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Po No /\ { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Se No ) with typecode |-
9 4 lrrecpred Could not format ( x e. No -> Pred ( { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } , No , x ) = ( ( _Left ` x ) u. ( _Right ` x ) ) ) : No typesetting found for |- ( x e. No -> Pred ( { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } , No , x ) = ( ( _Left ` x ) u. ( _Right ` x ) ) ) with typecode |-
10 9 raleqdv Could not format ( x e. No -> ( A. y e. Pred ( { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } , No , x ) ps <-> A. y e. ( ( _Left ` x ) u. ( _Right ` x ) ) ps ) ) : No typesetting found for |- ( x e. No -> ( A. y e. Pred ( { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } , No , x ) ps <-> A. y e. ( ( _Left ` x ) u. ( _Right ` x ) ) ps ) ) with typecode |-
11 10 3 sylbid Could not format ( x e. No -> ( A. y e. Pred ( { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } , No , x ) ps -> ph ) ) : No typesetting found for |- ( x e. No -> ( A. y e. Pred ( { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } , No , x ) ps -> ph ) ) with typecode |-
12 11 1 2 frpoins3g Could not format ( ( ( { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Fr No /\ { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Po No /\ { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Se No ) /\ A e. No ) -> ch ) : No typesetting found for |- ( ( ( { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Fr No /\ { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Po No /\ { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } Se No ) /\ A e. No ) -> ch ) with typecode |-
13 8 12 mpan ANoχ