Metamath Proof Explorer


Theorem noinds

Description: Induction principle for a single surreal. If a property passes from a surreal's left and right sets to the surreal itself, then it holds for all surreals. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypotheses noinds.1 x = y φ ψ
noinds.2 x = A φ χ
noinds.3 x No y L x R x ψ φ
Assertion noinds A No χ

Proof

Step Hyp Ref Expression
1 noinds.1 x = y φ ψ
2 noinds.2 x = A φ χ
3 noinds.3 x No y L x R x ψ φ
4 eqid a b | a L b R b = a b | a L b R b
5 4 lrrecfr a b | a L b R b Fr No
6 4 lrrecpo a b | a L b R b Po No
7 4 lrrecse a b | a L b R b Se No
8 5 6 7 3pm3.2i a b | a L b R b Fr No a b | a L b R b Po No a b | a L b R b Se No
9 4 lrrecpred x No Pred a b | a L b R b No x = L x R x
10 9 raleqdv x No y Pred a b | a L b R b No x ψ y L x R x ψ
11 10 3 sylbid x No y Pred a b | a L b R b No x ψ φ
12 11 1 2 frpoins3g a b | a L b R b Fr No a b | a L b R b Po No a b | a L b R b Se No A No χ
13 8 12 mpan A No χ