Metamath Proof Explorer


Theorem lrrecpred

Description: Finally, we calculate the value of the predecessor class over R . (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypothesis lrrec.1 R = x y | x L y R y
Assertion lrrecpred A No Pred R No A = L A R A

Proof

Step Hyp Ref Expression
1 lrrec.1 R = x y | x L y R y
2 dfpred3g A No Pred R No A = b No | b R A
3 1 lrrecval b No A No b R A b L A R A
4 3 ancoms A No b No b R A b L A R A
5 4 rabbidva A No b No | b R A = b No | b L A R A
6 dfrab2 b No | b L A R A = b | b L A R A No
7 abid2 b | b L A R A = L A R A
8 7 ineq1i b | b L A R A No = L A R A No
9 6 8 eqtri b No | b L A R A = L A R A No
10 5 9 eqtrdi A No b No | b R A = L A R A No
11 leftssno L A No
12 11 a1i A No L A No
13 rightssno R A No
14 13 a1i A No R A No
15 12 14 unssd A No L A R A No
16 df-ss L A R A No L A R A No = L A R A
17 15 16 sylib A No L A R A No = L A R A
18 2 10 17 3eqtrd A No Pred R No A = L A R A