Metamath Proof Explorer


Theorem no2inds

Description: Double induction on surreals. The many substitution instances are to cover all possible cases. (Contributed by Scott Fenton, 22-Aug-2024)

Ref Expression
Hypotheses no2inds.1 x = z φ ψ
no2inds.2 y = w ψ χ
no2inds.3 x = z θ χ
no2inds.4 x = A φ τ
no2inds.5 y = B τ η
no2inds.i x No y No z L x R x w L y R y χ z L x R x ψ w L y R y θ φ
Assertion no2inds A No B No η

Proof

Step Hyp Ref Expression
1 no2inds.1 x = z φ ψ
2 no2inds.2 y = w ψ χ
3 no2inds.3 x = z θ χ
4 no2inds.4 x = A φ τ
5 no2inds.5 y = B τ η
6 no2inds.i x No y No z L x R x w L y R y χ z L x R x ψ w L y R y θ φ
7 eqid a b | a L b R b = a b | a L b R b
8 eqid c d | c No × No d No × No 1 st c a b | a L b R b 1 st d 1 st c = 1 st d 2 nd c a b | a L b R b 2 nd d 2 nd c = 2 nd d c d = c d | c No × No d No × No 1 st c a b | a L b R b 1 st d 1 st c = 1 st d 2 nd c a b | a L b R b 2 nd d 2 nd c = 2 nd d c d
9 7 8 1 2 3 4 5 6 no2indslem A No B No η