Metamath Proof Explorer


Theorem no2inds

Description: Double induction on surreals. The many substitution instances are to cover all possible cases. (Contributed by Scott Fenton, 22-Aug-2024)

Ref Expression
Hypotheses no2inds.1 x=zφψ
no2inds.2 y=wψχ
no2inds.3 x=zθχ
no2inds.4 x=Aφτ
no2inds.5 y=Bτη
no2inds.i No typesetting found for |- ( ( x e. No /\ y e. No ) -> ( ( A. z e. ( ( _Left ` x ) u. ( _Right ` x ) ) A. w e. ( ( _Left ` y ) u. ( _Right ` y ) ) ch /\ A. z e. ( ( _Left ` x ) u. ( _Right ` x ) ) ps /\ A. w e. ( ( _Left ` y ) u. ( _Right ` y ) ) th ) -> ph ) ) with typecode |-
Assertion no2inds ANoBNoη

Proof

Step Hyp Ref Expression
1 no2inds.1 x=zφψ
2 no2inds.2 y=wψχ
3 no2inds.3 x=zθχ
4 no2inds.4 x=Aφτ
5 no2inds.5 y=Bτη
6 no2inds.i Could not format ( ( x e. No /\ y e. No ) -> ( ( A. z e. ( ( _Left ` x ) u. ( _Right ` x ) ) A. w e. ( ( _Left ` y ) u. ( _Right ` y ) ) ch /\ A. z e. ( ( _Left ` x ) u. ( _Right ` x ) ) ps /\ A. w e. ( ( _Left ` y ) u. ( _Right ` y ) ) th ) -> ph ) ) : No typesetting found for |- ( ( x e. No /\ y e. No ) -> ( ( A. z e. ( ( _Left ` x ) u. ( _Right ` x ) ) A. w e. ( ( _Left ` y ) u. ( _Right ` y ) ) ch /\ A. z e. ( ( _Left ` x ) u. ( _Right ` x ) ) ps /\ A. w e. ( ( _Left ` y ) u. ( _Right ` y ) ) th ) -> ph ) ) with typecode |-
7 eqid Could not format { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } = { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } : No typesetting found for |- { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } = { <. a , b >. | a e. ( ( _Left ` b ) u. ( _Right ` b ) ) } with typecode |-
8 7 1 2 3 4 5 6 no2indslem ANoBNoη