Step |
Hyp |
Ref |
Expression |
1 |
|
no2inds.1 |
|- ( x = z -> ( ph <-> ps ) ) |
2 |
|
no2inds.2 |
|- ( y = w -> ( ps <-> ch ) ) |
3 |
|
no2inds.3 |
|- ( x = z -> ( th <-> ch ) ) |
4 |
|
no2inds.4 |
|- ( x = A -> ( ph <-> ta ) ) |
5 |
|
no2inds.5 |
|- ( y = B -> ( ta <-> et ) ) |
6 |
|
no2inds.i |
|- ( ( x e. No /\ y e. No ) -> ( ( A. z e. ( ( _L ` x ) u. ( _R ` x ) ) A. w e. ( ( _L ` y ) u. ( _R ` y ) ) ch /\ A. z e. ( ( _L ` x ) u. ( _R ` x ) ) ps /\ A. w e. ( ( _L ` y ) u. ( _R ` y ) ) th ) -> ph ) ) |
7 |
|
eqid |
|- { <. a , b >. | a e. ( ( _L ` b ) u. ( _R ` b ) ) } = { <. a , b >. | a e. ( ( _L ` b ) u. ( _R ` b ) ) } |
8 |
|
eqid |
|- { <. c , d >. | ( c e. ( No X. No ) /\ d e. ( No X. No ) /\ ( ( ( 1st ` c ) { <. a , b >. | a e. ( ( _L ` b ) u. ( _R ` b ) ) } ( 1st ` d ) \/ ( 1st ` c ) = ( 1st ` d ) ) /\ ( ( 2nd ` c ) { <. a , b >. | a e. ( ( _L ` b ) u. ( _R ` b ) ) } ( 2nd ` d ) \/ ( 2nd ` c ) = ( 2nd ` d ) ) /\ c =/= d ) ) } = { <. c , d >. | ( c e. ( No X. No ) /\ d e. ( No X. No ) /\ ( ( ( 1st ` c ) { <. a , b >. | a e. ( ( _L ` b ) u. ( _R ` b ) ) } ( 1st ` d ) \/ ( 1st ` c ) = ( 1st ` d ) ) /\ ( ( 2nd ` c ) { <. a , b >. | a e. ( ( _L ` b ) u. ( _R ` b ) ) } ( 2nd ` d ) \/ ( 2nd ` c ) = ( 2nd ` d ) ) /\ c =/= d ) ) } |
9 |
7 8 1 2 3 4 5 6
|
no2indslem |
|- ( ( A e. No /\ B e. No ) -> et ) |