Metamath Proof Explorer


Theorem addscomd

Description: Surreal addition commutes. Part of Theorem 3 of Conway p. 17. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Hypotheses addscomd.1 ( 𝜑𝐴 No )
addscomd.2 ( 𝜑𝐵 No )
Assertion addscomd ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) )

Proof

Step Hyp Ref Expression
1 addscomd.1 ( 𝜑𝐴 No )
2 addscomd.2 ( 𝜑𝐵 No )
3 addscom ( ( 𝐴 No 𝐵 No ) → ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) )