Metamath Proof Explorer
Description: Surreal addition commutes. Part of Theorem 3 of Conway p. 17.
(Contributed by Scott Fenton, 20-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
addscomd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
|
|
addscomd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
|
Assertion |
addscomd |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
addscomd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
addscomd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
addscom |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) ) |