Metamath Proof Explorer


Theorem addscomd

Description: Surreal addition commutes. Part of Theorem 3 of Conway p. 17. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Hypotheses addscomd.1
|- ( ph -> A e. No )
addscomd.2
|- ( ph -> B e. No )
Assertion addscomd
|- ( ph -> ( A +s B ) = ( B +s A ) )

Proof

Step Hyp Ref Expression
1 addscomd.1
 |-  ( ph -> A e. No )
2 addscomd.2
 |-  ( ph -> B e. No )
3 addscom
 |-  ( ( A e. No /\ B e. No ) -> ( A +s B ) = ( B +s A ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A +s B ) = ( B +s A ) )