Description: Surreal less-than is preserved under addition. (Contributed by Scott Fenton, 21-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sltadd1im | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 <s 𝐵 → ( 𝐴 +s 𝐶 ) <s ( 𝐵 +s 𝐶 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | addsprop | ⊢ ( ( 𝐶 ∈ No ∧ 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐶 +s 𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( 𝐴 +s 𝐶 ) <s ( 𝐵 +s 𝐶 ) ) ) ) | |
| 2 | 1 | 3coml | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐶 +s 𝐴 ) ∈ No ∧ ( 𝐴 <s 𝐵 → ( 𝐴 +s 𝐶 ) <s ( 𝐵 +s 𝐶 ) ) ) ) | 
| 3 | 2 | simprd | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 <s 𝐵 → ( 𝐴 +s 𝐶 ) <s ( 𝐵 +s 𝐶 ) ) ) |