Metamath Proof Explorer


Theorem sltadd1im

Description: Surreal less-than is preserved under addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sltadd1im
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A  ( A +s C ) 

Proof

Step Hyp Ref Expression
1 addsprop
 |-  ( ( C e. No /\ A e. No /\ B e. No ) -> ( ( C +s A ) e. No /\ ( A  ( A +s C ) 
2 1 3coml
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( C +s A ) e. No /\ ( A  ( A +s C ) 
3 2 simprd
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A  ( A +s C )