Description: Surreal less-than is preserved under addition. (Contributed by Scott Fenton, 21-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | sltadd1im | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addsprop | |- ( ( C e. No /\ A e. No /\ B e. No ) -> ( ( C +s A ) e. No /\ ( A |
|
2 | 1 | 3coml | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( C +s A ) e. No /\ ( A |
3 | 2 | simprd | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A |