| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bdayelon | ⊢ (  bday  ‘ 𝑋 )  ∈  On | 
						
							| 2 |  | bdayelon | ⊢ (  bday  ‘ 𝑌 )  ∈  On | 
						
							| 3 |  | naddcl | ⊢ ( ( (  bday  ‘ 𝑋 )  ∈  On  ∧  (  bday  ‘ 𝑌 )  ∈  On )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On | 
						
							| 5 |  | bdayelon | ⊢ (  bday  ‘ 𝑍 )  ∈  On | 
						
							| 6 |  | naddcl | ⊢ ( ( (  bday  ‘ 𝑋 )  ∈  On  ∧  (  bday  ‘ 𝑍 )  ∈  On )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) )  ∈  On ) | 
						
							| 7 | 1 5 6 | mp2an | ⊢ ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) )  ∈  On | 
						
							| 8 | 4 7 | onun2i | ⊢ ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  ∈  On | 
						
							| 9 |  | risset | ⊢ ( ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  ∈  On  ↔  ∃ 𝑎  ∈  On 𝑎  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 10 | 8 9 | mpbi | ⊢ ∃ 𝑎  ∈  On 𝑎  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) | 
						
							| 11 |  | eqeq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ↔  𝑏  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) ) ) ) | 
						
							| 12 | 11 | imbi1d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) )  ↔  ( 𝑏  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) ) | 
						
							| 13 | 12 | ralbidv | ⊢ ( 𝑎  =  𝑏  →  ( ∀ 𝑧  ∈   No  ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) )  ↔  ∀ 𝑧  ∈   No  ( 𝑏  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) ) | 
						
							| 14 | 13 | 2ralbidv | ⊢ ( 𝑎  =  𝑏  →  ( ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) )  ↔  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( 𝑏  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑥  =  𝑝  →  (  bday  ‘ 𝑥 )  =  (  bday  ‘ 𝑝 ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( 𝑥  =  𝑝  →  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  =  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑦 ) ) ) | 
						
							| 17 | 15 | oveq1d | ⊢ ( 𝑥  =  𝑝  →  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) )  =  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑧 ) ) ) | 
						
							| 18 | 16 17 | uneq12d | ⊢ ( 𝑥  =  𝑝  →  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑧 ) ) ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( 𝑥  =  𝑝  →  ( 𝑏  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ↔  𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑧 ) ) ) ) ) | 
						
							| 20 |  | oveq1 | ⊢ ( 𝑥  =  𝑝  →  ( 𝑥  +s  𝑦 )  =  ( 𝑝  +s  𝑦 ) ) | 
						
							| 21 | 20 | eleq1d | ⊢ ( 𝑥  =  𝑝  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ↔  ( 𝑝  +s  𝑦 )  ∈   No  ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑥  =  𝑝  →  ( 𝑦  +s  𝑥 )  =  ( 𝑦  +s  𝑝 ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑥  =  𝑝  →  ( 𝑧  +s  𝑥 )  =  ( 𝑧  +s  𝑝 ) ) | 
						
							| 24 | 22 23 | breq12d | ⊢ ( 𝑥  =  𝑝  →  ( ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 )  ↔  ( 𝑦  +s  𝑝 )  <s  ( 𝑧  +s  𝑝 ) ) ) | 
						
							| 25 | 24 | imbi2d | ⊢ ( 𝑥  =  𝑝  →  ( ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) )  ↔  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑝 )  <s  ( 𝑧  +s  𝑝 ) ) ) ) | 
						
							| 26 | 21 25 | anbi12d | ⊢ ( 𝑥  =  𝑝  →  ( ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) )  ↔  ( ( 𝑝  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑝 )  <s  ( 𝑧  +s  𝑝 ) ) ) ) ) | 
						
							| 27 | 19 26 | imbi12d | ⊢ ( 𝑥  =  𝑝  →  ( ( 𝑏  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) )  ↔  ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑝 )  <s  ( 𝑧  +s  𝑝 ) ) ) ) ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑦  =  𝑞  →  (  bday  ‘ 𝑦 )  =  (  bday  ‘ 𝑞 ) ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( 𝑦  =  𝑞  →  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑦 ) )  =  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) ) ) | 
						
							| 30 | 29 | uneq1d | ⊢ ( 𝑦  =  𝑞  →  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑧 ) ) )  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑧 ) ) ) ) | 
						
							| 31 | 30 | eqeq2d | ⊢ ( 𝑦  =  𝑞  →  ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑧 ) ) )  ↔  𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑧 ) ) ) ) ) | 
						
							| 32 |  | oveq2 | ⊢ ( 𝑦  =  𝑞  →  ( 𝑝  +s  𝑦 )  =  ( 𝑝  +s  𝑞 ) ) | 
						
							| 33 | 32 | eleq1d | ⊢ ( 𝑦  =  𝑞  →  ( ( 𝑝  +s  𝑦 )  ∈   No   ↔  ( 𝑝  +s  𝑞 )  ∈   No  ) ) | 
						
							| 34 |  | breq1 | ⊢ ( 𝑦  =  𝑞  →  ( 𝑦  <s  𝑧  ↔  𝑞  <s  𝑧 ) ) | 
						
							| 35 |  | oveq1 | ⊢ ( 𝑦  =  𝑞  →  ( 𝑦  +s  𝑝 )  =  ( 𝑞  +s  𝑝 ) ) | 
						
							| 36 | 35 | breq1d | ⊢ ( 𝑦  =  𝑞  →  ( ( 𝑦  +s  𝑝 )  <s  ( 𝑧  +s  𝑝 )  ↔  ( 𝑞  +s  𝑝 )  <s  ( 𝑧  +s  𝑝 ) ) ) | 
						
							| 37 | 34 36 | imbi12d | ⊢ ( 𝑦  =  𝑞  →  ( ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑝 )  <s  ( 𝑧  +s  𝑝 ) )  ↔  ( 𝑞  <s  𝑧  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑧  +s  𝑝 ) ) ) ) | 
						
							| 38 | 33 37 | anbi12d | ⊢ ( 𝑦  =  𝑞  →  ( ( ( 𝑝  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑝 )  <s  ( 𝑧  +s  𝑝 ) ) )  ↔  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑧  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑧  +s  𝑝 ) ) ) ) ) | 
						
							| 39 | 31 38 | imbi12d | ⊢ ( 𝑦  =  𝑞  →  ( ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑝 )  <s  ( 𝑧  +s  𝑝 ) ) ) )  ↔  ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑧  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑧  +s  𝑝 ) ) ) ) ) ) | 
						
							| 40 |  | fveq2 | ⊢ ( 𝑧  =  𝑟  →  (  bday  ‘ 𝑧 )  =  (  bday  ‘ 𝑟 ) ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( 𝑧  =  𝑟  →  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑧 ) )  =  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) ) | 
						
							| 42 | 41 | uneq2d | ⊢ ( 𝑧  =  𝑟  →  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑧 ) ) )  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) ) ) | 
						
							| 43 | 42 | eqeq2d | ⊢ ( 𝑧  =  𝑟  →  ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑧 ) ) )  ↔  𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) ) ) ) | 
						
							| 44 |  | breq2 | ⊢ ( 𝑧  =  𝑟  →  ( 𝑞  <s  𝑧  ↔  𝑞  <s  𝑟 ) ) | 
						
							| 45 |  | oveq1 | ⊢ ( 𝑧  =  𝑟  →  ( 𝑧  +s  𝑝 )  =  ( 𝑟  +s  𝑝 ) ) | 
						
							| 46 | 45 | breq2d | ⊢ ( 𝑧  =  𝑟  →  ( ( 𝑞  +s  𝑝 )  <s  ( 𝑧  +s  𝑝 )  ↔  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) | 
						
							| 47 | 44 46 | imbi12d | ⊢ ( 𝑧  =  𝑟  →  ( ( 𝑞  <s  𝑧  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑧  +s  𝑝 ) )  ↔  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) | 
						
							| 48 | 47 | anbi2d | ⊢ ( 𝑧  =  𝑟  →  ( ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑧  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑧  +s  𝑝 ) ) )  ↔  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) | 
						
							| 49 | 43 48 | imbi12d | ⊢ ( 𝑧  =  𝑟  →  ( ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑧  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑧  +s  𝑝 ) ) ) )  ↔  ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) ) | 
						
							| 50 | 27 39 49 | cbvral3vw | ⊢ ( ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( 𝑏  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) )  ↔  ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) | 
						
							| 51 | 14 50 | bitrdi | ⊢ ( 𝑎  =  𝑏  →  ( ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) )  ↔  ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) ) | 
						
							| 52 |  | ralrot3 | ⊢ ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑏  ∈  𝑎 ∀ 𝑟  ∈   No  ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ↔  ∀ 𝑏  ∈  𝑎 ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) | 
						
							| 53 |  | ralcom | ⊢ ( ∀ 𝑏  ∈  𝑎 ∀ 𝑟  ∈   No  ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ↔  ∀ 𝑟  ∈   No  ∀ 𝑏  ∈  𝑎 ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) | 
						
							| 54 |  | r19.23v | ⊢ ( ∀ 𝑏  ∈  𝑎 ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ↔  ( ∃ 𝑏  ∈  𝑎 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) | 
						
							| 55 |  | risset | ⊢ ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  ↔  ∃ 𝑏  ∈  𝑎 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) ) ) | 
						
							| 56 | 55 | imbi1i | ⊢ ( ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ↔  ( ∃ 𝑏  ∈  𝑎 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) | 
						
							| 57 | 54 56 | bitr4i | ⊢ ( ∀ 𝑏  ∈  𝑎 ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ↔  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) | 
						
							| 58 | 57 | ralbii | ⊢ ( ∀ 𝑟  ∈   No  ∀ 𝑏  ∈  𝑎 ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ↔  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) | 
						
							| 59 | 53 58 | bitri | ⊢ ( ∀ 𝑏  ∈  𝑎 ∀ 𝑟  ∈   No  ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ↔  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) | 
						
							| 60 | 59 | 2ralbii | ⊢ ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑏  ∈  𝑎 ∀ 𝑟  ∈   No  ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ↔  ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) | 
						
							| 61 | 52 60 | bitr3i | ⊢ ( ∀ 𝑏  ∈  𝑎 ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ↔  ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) | 
						
							| 62 |  | eleq2 | ⊢ ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  ↔  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) ) ) ) | 
						
							| 63 | 62 | imbi1d | ⊢ ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ↔  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) ) | 
						
							| 64 | 63 | ralbidv | ⊢ ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ↔  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) ) | 
						
							| 65 | 64 | 2ralbidv | ⊢ ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ↔  ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) ) | 
						
							| 66 | 65 | anbi1d | ⊢ ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) )  ↔  ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) ) ) ) | 
						
							| 67 | 66 | biimpcd | ⊢ ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) )  →  ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) ) ) ) | 
						
							| 68 |  | simpl | ⊢ ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) )  →  ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) | 
						
							| 69 |  | simprll | ⊢ ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) )  →  𝑥  ∈   No  ) | 
						
							| 70 |  | simprlr | ⊢ ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) )  →  𝑦  ∈   No  ) | 
						
							| 71 | 68 69 70 | addsproplem3 | ⊢ ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( { 𝑎  ∣  ∃ 𝑏  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑏  +s  𝑦 ) }  ∪  { 𝑐  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑦 ) 𝑐  =  ( 𝑥  +s  𝑑 ) } )  <<s  { ( 𝑥  +s  𝑦 ) }  ∧  { ( 𝑥  +s  𝑦 ) }  <<s  ( { 𝑒  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝑥 ) 𝑒  =  ( 𝑓  +s  𝑦 ) }  ∪  { 𝑔  ∣  ∃ ℎ  ∈  (  R  ‘ 𝑦 ) 𝑔  =  ( 𝑥  +s  ℎ ) } ) ) ) | 
						
							| 72 | 71 | simp1d | ⊢ ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) )  →  ( 𝑥  +s  𝑦 )  ∈   No  ) | 
						
							| 73 | 68 | adantr | ⊢ ( ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) )  ∧  𝑦  <s  𝑧 )  →  ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) ) ) | 
						
							| 74 | 69 | adantr | ⊢ ( ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) )  ∧  𝑦  <s  𝑧 )  →  𝑥  ∈   No  ) | 
						
							| 75 | 70 | adantr | ⊢ ( ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) )  ∧  𝑦  <s  𝑧 )  →  𝑦  ∈   No  ) | 
						
							| 76 |  | simplrr | ⊢ ( ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) )  ∧  𝑦  <s  𝑧 )  →  𝑧  ∈   No  ) | 
						
							| 77 |  | simpr | ⊢ ( ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) )  ∧  𝑦  <s  𝑧 )  →  𝑦  <s  𝑧 ) | 
						
							| 78 | 73 74 75 76 77 | addsproplem7 | ⊢ ( ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) )  ∧  𝑦  <s  𝑧 )  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) | 
						
							| 79 | 78 | ex | ⊢ ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) )  →  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) | 
						
							| 80 | 72 79 | jca | ⊢ ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) | 
						
							| 81 | 67 80 | syl6 | ⊢ ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  ∧  𝑧  ∈   No  ) )  →  ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 82 | 81 | anassrs | ⊢ ( ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( 𝑥  ∈   No   ∧  𝑦  ∈   No  ) )  ∧  𝑧  ∈   No  )  →  ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 83 | 82 | ralrimiva | ⊢ ( ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  ∧  ( 𝑥  ∈   No   ∧  𝑦  ∈   No  ) )  →  ∀ 𝑧  ∈   No  ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 84 | 83 | ralrimivva | ⊢ ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  𝑎  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 85 | 61 84 | sylbi | ⊢ ( ∀ 𝑏  ∈  𝑎 ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 86 | 85 | a1i | ⊢ ( 𝑎  ∈  On  →  ( ∀ 𝑏  ∈  𝑎 ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ∀ 𝑟  ∈   No  ( 𝑏  =  ( ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑞 ) )  ∪  ( (  bday  ‘ 𝑝 )  +no  (  bday  ‘ 𝑟 ) ) )  →  ( ( 𝑝  +s  𝑞 )  ∈   No   ∧  ( 𝑞  <s  𝑟  →  ( 𝑞  +s  𝑝 )  <s  ( 𝑟  +s  𝑝 ) ) ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) ) | 
						
							| 87 | 51 86 | tfis2 | ⊢ ( 𝑎  ∈  On  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 88 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  (  bday  ‘ 𝑥 )  =  (  bday  ‘ 𝑋 ) ) | 
						
							| 89 | 88 | oveq1d | ⊢ ( 𝑥  =  𝑋  →  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  =  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑦 ) ) ) | 
						
							| 90 | 88 | oveq1d | ⊢ ( 𝑥  =  𝑋  →  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) )  =  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑧 ) ) ) | 
						
							| 91 | 89 90 | uneq12d | ⊢ ( 𝑥  =  𝑋  →  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑧 ) ) ) ) | 
						
							| 92 | 91 | eqeq2d | ⊢ ( 𝑥  =  𝑋  →  ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ↔  𝑎  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑧 ) ) ) ) ) | 
						
							| 93 |  | oveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  +s  𝑦 )  =  ( 𝑋  +s  𝑦 ) ) | 
						
							| 94 | 93 | eleq1d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ↔  ( 𝑋  +s  𝑦 )  ∈   No  ) ) | 
						
							| 95 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑦  +s  𝑥 )  =  ( 𝑦  +s  𝑋 ) ) | 
						
							| 96 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑧  +s  𝑥 )  =  ( 𝑧  +s  𝑋 ) ) | 
						
							| 97 | 95 96 | breq12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 )  ↔  ( 𝑦  +s  𝑋 )  <s  ( 𝑧  +s  𝑋 ) ) ) | 
						
							| 98 | 97 | imbi2d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) )  ↔  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑋 )  <s  ( 𝑧  +s  𝑋 ) ) ) ) | 
						
							| 99 | 94 98 | anbi12d | ⊢ ( 𝑥  =  𝑋  →  ( ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) )  ↔  ( ( 𝑋  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑋 )  <s  ( 𝑧  +s  𝑋 ) ) ) ) ) | 
						
							| 100 | 92 99 | imbi12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) )  ↔  ( 𝑎  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑋  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑋 )  <s  ( 𝑧  +s  𝑋 ) ) ) ) ) ) | 
						
							| 101 |  | fveq2 | ⊢ ( 𝑦  =  𝑌  →  (  bday  ‘ 𝑦 )  =  (  bday  ‘ 𝑌 ) ) | 
						
							| 102 | 101 | oveq2d | ⊢ ( 𝑦  =  𝑌  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑦 ) )  =  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 103 | 102 | uneq1d | ⊢ ( 𝑦  =  𝑌  →  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑧 ) ) )  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑧 ) ) ) ) | 
						
							| 104 | 103 | eqeq2d | ⊢ ( 𝑦  =  𝑌  →  ( 𝑎  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑧 ) ) )  ↔  𝑎  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑧 ) ) ) ) ) | 
						
							| 105 |  | oveq2 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑋  +s  𝑦 )  =  ( 𝑋  +s  𝑌 ) ) | 
						
							| 106 | 105 | eleq1d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝑋  +s  𝑦 )  ∈   No   ↔  ( 𝑋  +s  𝑌 )  ∈   No  ) ) | 
						
							| 107 |  | breq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦  <s  𝑧  ↔  𝑌  <s  𝑧 ) ) | 
						
							| 108 |  | oveq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦  +s  𝑋 )  =  ( 𝑌  +s  𝑋 ) ) | 
						
							| 109 | 108 | breq1d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝑦  +s  𝑋 )  <s  ( 𝑧  +s  𝑋 )  ↔  ( 𝑌  +s  𝑋 )  <s  ( 𝑧  +s  𝑋 ) ) ) | 
						
							| 110 | 107 109 | imbi12d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑋 )  <s  ( 𝑧  +s  𝑋 ) )  ↔  ( 𝑌  <s  𝑧  →  ( 𝑌  +s  𝑋 )  <s  ( 𝑧  +s  𝑋 ) ) ) ) | 
						
							| 111 | 106 110 | anbi12d | ⊢ ( 𝑦  =  𝑌  →  ( ( ( 𝑋  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑋 )  <s  ( 𝑧  +s  𝑋 ) ) )  ↔  ( ( 𝑋  +s  𝑌 )  ∈   No   ∧  ( 𝑌  <s  𝑧  →  ( 𝑌  +s  𝑋 )  <s  ( 𝑧  +s  𝑋 ) ) ) ) ) | 
						
							| 112 | 104 111 | imbi12d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝑎  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑋  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑋 )  <s  ( 𝑧  +s  𝑋 ) ) ) )  ↔  ( 𝑎  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑋  +s  𝑌 )  ∈   No   ∧  ( 𝑌  <s  𝑧  →  ( 𝑌  +s  𝑋 )  <s  ( 𝑧  +s  𝑋 ) ) ) ) ) ) | 
						
							| 113 |  | fveq2 | ⊢ ( 𝑧  =  𝑍  →  (  bday  ‘ 𝑧 )  =  (  bday  ‘ 𝑍 ) ) | 
						
							| 114 | 113 | oveq2d | ⊢ ( 𝑧  =  𝑍  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑧 ) )  =  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) | 
						
							| 115 | 114 | uneq2d | ⊢ ( 𝑧  =  𝑍  →  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑧 ) ) )  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 116 | 115 | eqeq2d | ⊢ ( 𝑧  =  𝑍  →  ( 𝑎  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑧 ) ) )  ↔  𝑎  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) ) | 
						
							| 117 |  | breq2 | ⊢ ( 𝑧  =  𝑍  →  ( 𝑌  <s  𝑧  ↔  𝑌  <s  𝑍 ) ) | 
						
							| 118 |  | oveq1 | ⊢ ( 𝑧  =  𝑍  →  ( 𝑧  +s  𝑋 )  =  ( 𝑍  +s  𝑋 ) ) | 
						
							| 119 | 118 | breq2d | ⊢ ( 𝑧  =  𝑍  →  ( ( 𝑌  +s  𝑋 )  <s  ( 𝑧  +s  𝑋 )  ↔  ( 𝑌  +s  𝑋 )  <s  ( 𝑍  +s  𝑋 ) ) ) | 
						
							| 120 | 117 119 | imbi12d | ⊢ ( 𝑧  =  𝑍  →  ( ( 𝑌  <s  𝑧  →  ( 𝑌  +s  𝑋 )  <s  ( 𝑧  +s  𝑋 ) )  ↔  ( 𝑌  <s  𝑍  →  ( 𝑌  +s  𝑋 )  <s  ( 𝑍  +s  𝑋 ) ) ) ) | 
						
							| 121 | 120 | anbi2d | ⊢ ( 𝑧  =  𝑍  →  ( ( ( 𝑋  +s  𝑌 )  ∈   No   ∧  ( 𝑌  <s  𝑧  →  ( 𝑌  +s  𝑋 )  <s  ( 𝑧  +s  𝑋 ) ) )  ↔  ( ( 𝑋  +s  𝑌 )  ∈   No   ∧  ( 𝑌  <s  𝑍  →  ( 𝑌  +s  𝑋 )  <s  ( 𝑍  +s  𝑋 ) ) ) ) ) | 
						
							| 122 | 116 121 | imbi12d | ⊢ ( 𝑧  =  𝑍  →  ( ( 𝑎  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑋  +s  𝑌 )  ∈   No   ∧  ( 𝑌  <s  𝑧  →  ( 𝑌  +s  𝑋 )  <s  ( 𝑧  +s  𝑋 ) ) ) )  ↔  ( 𝑎  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑋  +s  𝑌 )  ∈   No   ∧  ( 𝑌  <s  𝑍  →  ( 𝑌  +s  𝑋 )  <s  ( 𝑍  +s  𝑋 ) ) ) ) ) ) | 
						
							| 123 | 100 112 122 | rspc3v | ⊢ ( ( 𝑋  ∈   No   ∧  𝑌  ∈   No   ∧  𝑍  ∈   No  )  →  ( ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( 𝑎  =  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) )  →  ( 𝑎  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑋  +s  𝑌 )  ∈   No   ∧  ( 𝑌  <s  𝑍  →  ( 𝑌  +s  𝑋 )  <s  ( 𝑍  +s  𝑋 ) ) ) ) ) ) | 
						
							| 124 | 87 123 | syl5com | ⊢ ( 𝑎  ∈  On  →  ( ( 𝑋  ∈   No   ∧  𝑌  ∈   No   ∧  𝑍  ∈   No  )  →  ( 𝑎  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑋  +s  𝑌 )  ∈   No   ∧  ( 𝑌  <s  𝑍  →  ( 𝑌  +s  𝑋 )  <s  ( 𝑍  +s  𝑋 ) ) ) ) ) ) | 
						
							| 125 | 124 | com23 | ⊢ ( 𝑎  ∈  On  →  ( 𝑎  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑋  ∈   No   ∧  𝑌  ∈   No   ∧  𝑍  ∈   No  )  →  ( ( 𝑋  +s  𝑌 )  ∈   No   ∧  ( 𝑌  <s  𝑍  →  ( 𝑌  +s  𝑋 )  <s  ( 𝑍  +s  𝑋 ) ) ) ) ) ) | 
						
							| 126 | 125 | rexlimiv | ⊢ ( ∃ 𝑎  ∈  On 𝑎  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑋  ∈   No   ∧  𝑌  ∈   No   ∧  𝑍  ∈   No  )  →  ( ( 𝑋  +s  𝑌 )  ∈   No   ∧  ( 𝑌  <s  𝑍  →  ( 𝑌  +s  𝑋 )  <s  ( 𝑍  +s  𝑋 ) ) ) ) ) | 
						
							| 127 | 10 126 | ax-mp | ⊢ ( ( 𝑋  ∈   No   ∧  𝑌  ∈   No   ∧  𝑍  ∈   No  )  →  ( ( 𝑋  +s  𝑌 )  ∈   No   ∧  ( 𝑌  <s  𝑍  →  ( 𝑌  +s  𝑋 )  <s  ( 𝑍  +s  𝑋 ) ) ) ) |