Step |
Hyp |
Ref |
Expression |
1 |
|
bdayelon |
⊢ ( bday ‘ 𝑋 ) ∈ On |
2 |
|
bdayelon |
⊢ ( bday ‘ 𝑌 ) ∈ On |
3 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On ) |
4 |
1 2 3
|
mp2an |
⊢ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∈ On |
5 |
|
bdayelon |
⊢ ( bday ‘ 𝑍 ) ∈ On |
6 |
|
naddcl |
⊢ ( ( ( bday ‘ 𝑋 ) ∈ On ∧ ( bday ‘ 𝑍 ) ∈ On ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ∈ On ) |
7 |
1 5 6
|
mp2an |
⊢ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ∈ On |
8 |
4 7
|
onun2i |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ∈ On |
9 |
|
risset |
⊢ ( ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ∈ On ↔ ∃ 𝑎 ∈ On 𝑎 = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
10 |
8 9
|
mpbi |
⊢ ∃ 𝑎 ∈ On 𝑎 = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) |
11 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ↔ 𝑏 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ) ) |
12 |
11
|
imbi1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ( 𝑏 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑎 = 𝑏 → ( ∀ 𝑧 ∈ No ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ∀ 𝑧 ∈ No ( 𝑏 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) ) |
14 |
13
|
2ralbidv |
⊢ ( 𝑎 = 𝑏 → ( ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( 𝑏 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑝 → ( bday ‘ 𝑥 ) = ( bday ‘ 𝑝 ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝑥 = 𝑝 → ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) = ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑦 ) ) ) |
17 |
15
|
oveq1d |
⊢ ( 𝑥 = 𝑝 → ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) = ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑧 ) ) ) |
18 |
16 17
|
uneq12d |
⊢ ( 𝑥 = 𝑝 → ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑧 ) ) ) ) |
19 |
18
|
eqeq2d |
⊢ ( 𝑥 = 𝑝 → ( 𝑏 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ↔ 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑧 ) ) ) ) ) |
20 |
|
oveq1 |
⊢ ( 𝑥 = 𝑝 → ( 𝑥 +s 𝑦 ) = ( 𝑝 +s 𝑦 ) ) |
21 |
20
|
eleq1d |
⊢ ( 𝑥 = 𝑝 → ( ( 𝑥 +s 𝑦 ) ∈ No ↔ ( 𝑝 +s 𝑦 ) ∈ No ) ) |
22 |
|
oveq2 |
⊢ ( 𝑥 = 𝑝 → ( 𝑦 +s 𝑥 ) = ( 𝑦 +s 𝑝 ) ) |
23 |
|
oveq2 |
⊢ ( 𝑥 = 𝑝 → ( 𝑧 +s 𝑥 ) = ( 𝑧 +s 𝑝 ) ) |
24 |
22 23
|
breq12d |
⊢ ( 𝑥 = 𝑝 → ( ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ↔ ( 𝑦 +s 𝑝 ) <s ( 𝑧 +s 𝑝 ) ) ) |
25 |
24
|
imbi2d |
⊢ ( 𝑥 = 𝑝 → ( ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ↔ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑝 ) <s ( 𝑧 +s 𝑝 ) ) ) ) |
26 |
21 25
|
anbi12d |
⊢ ( 𝑥 = 𝑝 → ( ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ↔ ( ( 𝑝 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑝 ) <s ( 𝑧 +s 𝑝 ) ) ) ) ) |
27 |
19 26
|
imbi12d |
⊢ ( 𝑥 = 𝑝 → ( ( 𝑏 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑝 ) <s ( 𝑧 +s 𝑝 ) ) ) ) ) ) |
28 |
|
fveq2 |
⊢ ( 𝑦 = 𝑞 → ( bday ‘ 𝑦 ) = ( bday ‘ 𝑞 ) ) |
29 |
28
|
oveq2d |
⊢ ( 𝑦 = 𝑞 → ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑦 ) ) = ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ) |
30 |
29
|
uneq1d |
⊢ ( 𝑦 = 𝑞 → ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑧 ) ) ) = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑧 ) ) ) ) |
31 |
30
|
eqeq2d |
⊢ ( 𝑦 = 𝑞 → ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑧 ) ) ) ↔ 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑧 ) ) ) ) ) |
32 |
|
oveq2 |
⊢ ( 𝑦 = 𝑞 → ( 𝑝 +s 𝑦 ) = ( 𝑝 +s 𝑞 ) ) |
33 |
32
|
eleq1d |
⊢ ( 𝑦 = 𝑞 → ( ( 𝑝 +s 𝑦 ) ∈ No ↔ ( 𝑝 +s 𝑞 ) ∈ No ) ) |
34 |
|
breq1 |
⊢ ( 𝑦 = 𝑞 → ( 𝑦 <s 𝑧 ↔ 𝑞 <s 𝑧 ) ) |
35 |
|
oveq1 |
⊢ ( 𝑦 = 𝑞 → ( 𝑦 +s 𝑝 ) = ( 𝑞 +s 𝑝 ) ) |
36 |
35
|
breq1d |
⊢ ( 𝑦 = 𝑞 → ( ( 𝑦 +s 𝑝 ) <s ( 𝑧 +s 𝑝 ) ↔ ( 𝑞 +s 𝑝 ) <s ( 𝑧 +s 𝑝 ) ) ) |
37 |
34 36
|
imbi12d |
⊢ ( 𝑦 = 𝑞 → ( ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑝 ) <s ( 𝑧 +s 𝑝 ) ) ↔ ( 𝑞 <s 𝑧 → ( 𝑞 +s 𝑝 ) <s ( 𝑧 +s 𝑝 ) ) ) ) |
38 |
33 37
|
anbi12d |
⊢ ( 𝑦 = 𝑞 → ( ( ( 𝑝 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑝 ) <s ( 𝑧 +s 𝑝 ) ) ) ↔ ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑧 → ( 𝑞 +s 𝑝 ) <s ( 𝑧 +s 𝑝 ) ) ) ) ) |
39 |
31 38
|
imbi12d |
⊢ ( 𝑦 = 𝑞 → ( ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑝 ) <s ( 𝑧 +s 𝑝 ) ) ) ) ↔ ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑧 → ( 𝑞 +s 𝑝 ) <s ( 𝑧 +s 𝑝 ) ) ) ) ) ) |
40 |
|
fveq2 |
⊢ ( 𝑧 = 𝑟 → ( bday ‘ 𝑧 ) = ( bday ‘ 𝑟 ) ) |
41 |
40
|
oveq2d |
⊢ ( 𝑧 = 𝑟 → ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑧 ) ) = ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) |
42 |
41
|
uneq2d |
⊢ ( 𝑧 = 𝑟 → ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑧 ) ) ) = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ) |
43 |
42
|
eqeq2d |
⊢ ( 𝑧 = 𝑟 → ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑧 ) ) ) ↔ 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ) ) |
44 |
|
breq2 |
⊢ ( 𝑧 = 𝑟 → ( 𝑞 <s 𝑧 ↔ 𝑞 <s 𝑟 ) ) |
45 |
|
oveq1 |
⊢ ( 𝑧 = 𝑟 → ( 𝑧 +s 𝑝 ) = ( 𝑟 +s 𝑝 ) ) |
46 |
45
|
breq2d |
⊢ ( 𝑧 = 𝑟 → ( ( 𝑞 +s 𝑝 ) <s ( 𝑧 +s 𝑝 ) ↔ ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) |
47 |
44 46
|
imbi12d |
⊢ ( 𝑧 = 𝑟 → ( ( 𝑞 <s 𝑧 → ( 𝑞 +s 𝑝 ) <s ( 𝑧 +s 𝑝 ) ) ↔ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) |
48 |
47
|
anbi2d |
⊢ ( 𝑧 = 𝑟 → ( ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑧 → ( 𝑞 +s 𝑝 ) <s ( 𝑧 +s 𝑝 ) ) ) ↔ ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) |
49 |
43 48
|
imbi12d |
⊢ ( 𝑧 = 𝑟 → ( ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑧 → ( 𝑞 +s 𝑝 ) <s ( 𝑧 +s 𝑝 ) ) ) ) ↔ ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) ) |
50 |
27 39 49
|
cbvral3vw |
⊢ ( ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( 𝑏 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) |
51 |
14 50
|
bitrdi |
⊢ ( 𝑎 = 𝑏 → ( ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) ) |
52 |
|
ralrot3 |
⊢ ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑏 ∈ 𝑎 ∀ 𝑟 ∈ No ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ↔ ∀ 𝑏 ∈ 𝑎 ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) |
53 |
|
ralcom |
⊢ ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑟 ∈ No ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ↔ ∀ 𝑟 ∈ No ∀ 𝑏 ∈ 𝑎 ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) |
54 |
|
r19.23v |
⊢ ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ↔ ( ∃ 𝑏 ∈ 𝑎 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) |
55 |
|
risset |
⊢ ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 ↔ ∃ 𝑏 ∈ 𝑎 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ) |
56 |
55
|
imbi1i |
⊢ ( ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ↔ ( ∃ 𝑏 ∈ 𝑎 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) |
57 |
54 56
|
bitr4i |
⊢ ( ∀ 𝑏 ∈ 𝑎 ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ↔ ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) |
58 |
57
|
ralbii |
⊢ ( ∀ 𝑟 ∈ No ∀ 𝑏 ∈ 𝑎 ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ↔ ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) |
59 |
53 58
|
bitri |
⊢ ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑟 ∈ No ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ↔ ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) |
60 |
59
|
2ralbii |
⊢ ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑏 ∈ 𝑎 ∀ 𝑟 ∈ No ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ↔ ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) |
61 |
52 60
|
bitr3i |
⊢ ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ↔ ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) |
62 |
|
eleq2 |
⊢ ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 ↔ ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ) ) |
63 |
62
|
imbi1d |
⊢ ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ↔ ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) ) |
64 |
63
|
ralbidv |
⊢ ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ↔ ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) ) |
65 |
64
|
2ralbidv |
⊢ ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ↔ ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) ) |
66 |
65
|
anbi1d |
⊢ ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) ↔ ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) ) ) |
67 |
66
|
biimpcd |
⊢ ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) → ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) ) ) |
68 |
|
simpl |
⊢ ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) → ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) |
69 |
|
simprll |
⊢ ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) → 𝑥 ∈ No ) |
70 |
|
simprlr |
⊢ ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) → 𝑦 ∈ No ) |
71 |
68 69 70
|
addsproplem3 |
⊢ ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑏 +s 𝑦 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑦 ) 𝑐 = ( 𝑥 +s 𝑑 ) } ) <<s { ( 𝑥 +s 𝑦 ) } ∧ { ( 𝑥 +s 𝑦 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑥 ) 𝑒 = ( 𝑓 +s 𝑦 ) } ∪ { 𝑔 ∣ ∃ ℎ ∈ ( R ‘ 𝑦 ) 𝑔 = ( 𝑥 +s ℎ ) } ) ) ) |
72 |
71
|
simp1d |
⊢ ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) → ( 𝑥 +s 𝑦 ) ∈ No ) |
73 |
68
|
adantr |
⊢ ( ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) ∧ 𝑦 <s 𝑧 ) → ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ) |
74 |
69
|
adantr |
⊢ ( ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) ∧ 𝑦 <s 𝑧 ) → 𝑥 ∈ No ) |
75 |
70
|
adantr |
⊢ ( ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) ∧ 𝑦 <s 𝑧 ) → 𝑦 ∈ No ) |
76 |
|
simplrr |
⊢ ( ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) ∧ 𝑦 <s 𝑧 ) → 𝑧 ∈ No ) |
77 |
|
simpr |
⊢ ( ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) ∧ 𝑦 <s 𝑧 ) → 𝑦 <s 𝑧 ) |
78 |
73 74 75 76 77
|
addsproplem7 |
⊢ ( ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) ∧ 𝑦 <s 𝑧 ) → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) |
79 |
78
|
ex |
⊢ ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) → ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) |
80 |
72 79
|
jca |
⊢ ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) |
81 |
67 80
|
syl6 |
⊢ ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ∧ 𝑧 ∈ No ) ) → ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
82 |
81
|
anassrs |
⊢ ( ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ) ∧ 𝑧 ∈ No ) → ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
83 |
82
|
ralrimiva |
⊢ ( ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) ∧ ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ) → ∀ 𝑧 ∈ No ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
84 |
83
|
ralrimivva |
⊢ ( ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) ∈ 𝑎 → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
85 |
61 84
|
sylbi |
⊢ ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
86 |
85
|
a1i |
⊢ ( 𝑎 ∈ On → ( ∀ 𝑏 ∈ 𝑎 ∀ 𝑝 ∈ No ∀ 𝑞 ∈ No ∀ 𝑟 ∈ No ( 𝑏 = ( ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑞 ) ) ∪ ( ( bday ‘ 𝑝 ) +no ( bday ‘ 𝑟 ) ) ) → ( ( 𝑝 +s 𝑞 ) ∈ No ∧ ( 𝑞 <s 𝑟 → ( 𝑞 +s 𝑝 ) <s ( 𝑟 +s 𝑝 ) ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) ) |
87 |
51 86
|
tfis2 |
⊢ ( 𝑎 ∈ On → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
88 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( bday ‘ 𝑥 ) = ( bday ‘ 𝑋 ) ) |
89 |
88
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑦 ) ) ) |
90 |
88
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑧 ) ) ) |
91 |
89 90
|
uneq12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑧 ) ) ) ) |
92 |
91
|
eqeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ↔ 𝑎 = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑧 ) ) ) ) ) |
93 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 +s 𝑦 ) = ( 𝑋 +s 𝑦 ) ) |
94 |
93
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 +s 𝑦 ) ∈ No ↔ ( 𝑋 +s 𝑦 ) ∈ No ) ) |
95 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 +s 𝑥 ) = ( 𝑦 +s 𝑋 ) ) |
96 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑧 +s 𝑥 ) = ( 𝑧 +s 𝑋 ) ) |
97 |
95 96
|
breq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ↔ ( 𝑦 +s 𝑋 ) <s ( 𝑧 +s 𝑋 ) ) ) |
98 |
97
|
imbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ↔ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑋 ) <s ( 𝑧 +s 𝑋 ) ) ) ) |
99 |
94 98
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ↔ ( ( 𝑋 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑋 ) <s ( 𝑧 +s 𝑋 ) ) ) ) ) |
100 |
92 99
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ( 𝑎 = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑋 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑋 ) <s ( 𝑧 +s 𝑋 ) ) ) ) ) ) |
101 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( bday ‘ 𝑦 ) = ( bday ‘ 𝑌 ) ) |
102 |
101
|
oveq2d |
⊢ ( 𝑦 = 𝑌 → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑦 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
103 |
102
|
uneq1d |
⊢ ( 𝑦 = 𝑌 → ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑧 ) ) ) = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑧 ) ) ) ) |
104 |
103
|
eqeq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝑎 = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑧 ) ) ) ↔ 𝑎 = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑧 ) ) ) ) ) |
105 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 +s 𝑦 ) = ( 𝑋 +s 𝑌 ) ) |
106 |
105
|
eleq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 +s 𝑦 ) ∈ No ↔ ( 𝑋 +s 𝑌 ) ∈ No ) ) |
107 |
|
breq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 <s 𝑧 ↔ 𝑌 <s 𝑧 ) ) |
108 |
|
oveq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 +s 𝑋 ) = ( 𝑌 +s 𝑋 ) ) |
109 |
108
|
breq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑦 +s 𝑋 ) <s ( 𝑧 +s 𝑋 ) ↔ ( 𝑌 +s 𝑋 ) <s ( 𝑧 +s 𝑋 ) ) ) |
110 |
107 109
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑋 ) <s ( 𝑧 +s 𝑋 ) ) ↔ ( 𝑌 <s 𝑧 → ( 𝑌 +s 𝑋 ) <s ( 𝑧 +s 𝑋 ) ) ) ) |
111 |
106 110
|
anbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( 𝑋 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑋 ) <s ( 𝑧 +s 𝑋 ) ) ) ↔ ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 𝑧 → ( 𝑌 +s 𝑋 ) <s ( 𝑧 +s 𝑋 ) ) ) ) ) |
112 |
104 111
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑎 = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑋 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑋 ) <s ( 𝑧 +s 𝑋 ) ) ) ) ↔ ( 𝑎 = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 𝑧 → ( 𝑌 +s 𝑋 ) <s ( 𝑧 +s 𝑋 ) ) ) ) ) ) |
113 |
|
fveq2 |
⊢ ( 𝑧 = 𝑍 → ( bday ‘ 𝑧 ) = ( bday ‘ 𝑍 ) ) |
114 |
113
|
oveq2d |
⊢ ( 𝑧 = 𝑍 → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑧 ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) |
115 |
114
|
uneq2d |
⊢ ( 𝑧 = 𝑍 → ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑧 ) ) ) = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
116 |
115
|
eqeq2d |
⊢ ( 𝑧 = 𝑍 → ( 𝑎 = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑧 ) ) ) ↔ 𝑎 = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) ) |
117 |
|
breq2 |
⊢ ( 𝑧 = 𝑍 → ( 𝑌 <s 𝑧 ↔ 𝑌 <s 𝑍 ) ) |
118 |
|
oveq1 |
⊢ ( 𝑧 = 𝑍 → ( 𝑧 +s 𝑋 ) = ( 𝑍 +s 𝑋 ) ) |
119 |
118
|
breq2d |
⊢ ( 𝑧 = 𝑍 → ( ( 𝑌 +s 𝑋 ) <s ( 𝑧 +s 𝑋 ) ↔ ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) ) |
120 |
117 119
|
imbi12d |
⊢ ( 𝑧 = 𝑍 → ( ( 𝑌 <s 𝑧 → ( 𝑌 +s 𝑋 ) <s ( 𝑧 +s 𝑋 ) ) ↔ ( 𝑌 <s 𝑍 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) ) ) |
121 |
120
|
anbi2d |
⊢ ( 𝑧 = 𝑍 → ( ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 𝑧 → ( 𝑌 +s 𝑋 ) <s ( 𝑧 +s 𝑋 ) ) ) ↔ ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 𝑍 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) ) ) ) |
122 |
116 121
|
imbi12d |
⊢ ( 𝑧 = 𝑍 → ( ( 𝑎 = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 𝑧 → ( 𝑌 +s 𝑋 ) <s ( 𝑧 +s 𝑋 ) ) ) ) ↔ ( 𝑎 = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 𝑍 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) ) ) ) ) |
123 |
100 112 122
|
rspc3v |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑍 ∈ No ) → ( ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( 𝑎 = ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) → ( 𝑎 = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 𝑍 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) ) ) ) ) |
124 |
87 123
|
syl5com |
⊢ ( 𝑎 ∈ On → ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑍 ∈ No ) → ( 𝑎 = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 𝑍 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) ) ) ) ) |
125 |
124
|
com23 |
⊢ ( 𝑎 ∈ On → ( 𝑎 = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑍 ∈ No ) → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 𝑍 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) ) ) ) ) |
126 |
125
|
rexlimiv |
⊢ ( ∃ 𝑎 ∈ On 𝑎 = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑍 ∈ No ) → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 𝑍 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) ) ) ) |
127 |
10 126
|
ax-mp |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ 𝑍 ∈ No ) → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( 𝑌 <s 𝑍 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) ) ) |