| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addsproplem.1 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 2 |  | addsproplem2.2 | ⊢ ( 𝜑  →  𝑋  ∈   No  ) | 
						
							| 3 |  | addsproplem2.3 | ⊢ ( 𝜑  →  𝑌  ∈   No  ) | 
						
							| 4 | 1 2 3 | addsproplem2 | ⊢ ( 𝜑  →  ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  <<s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) | 
						
							| 5 |  | scutcut | ⊢ ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  <<s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } )  →  ( ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) )  ∈   No   ∧  ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  <<s  { ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) }  ∧  { ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) }  <<s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  ( ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) )  ∈   No   ∧  ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  <<s  { ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) }  ∧  { ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) }  <<s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) ) | 
						
							| 7 |  | addsval2 | ⊢ ( ( 𝑋  ∈   No   ∧  𝑌  ∈   No  )  →  ( 𝑋  +s  𝑌 )  =  ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) ) | 
						
							| 8 | 2 3 7 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  +s  𝑌 )  =  ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) ) | 
						
							| 9 | 8 | eleq1d | ⊢ ( 𝜑  →  ( ( 𝑋  +s  𝑌 )  ∈   No   ↔  ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) )  ∈   No  ) ) | 
						
							| 10 | 8 | sneqd | ⊢ ( 𝜑  →  { ( 𝑋  +s  𝑌 ) }  =  { ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) } ) | 
						
							| 11 | 10 | breq2d | ⊢ ( 𝜑  →  ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  <<s  { ( 𝑋  +s  𝑌 ) }  ↔  ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  <<s  { ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) } ) ) | 
						
							| 12 | 10 | breq1d | ⊢ ( 𝜑  →  ( { ( 𝑋  +s  𝑌 ) }  <<s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } )  ↔  { ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) }  <<s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) ) | 
						
							| 13 | 9 11 12 | 3anbi123d | ⊢ ( 𝜑  →  ( ( ( 𝑋  +s  𝑌 )  ∈   No   ∧  ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  <<s  { ( 𝑋  +s  𝑌 ) }  ∧  { ( 𝑋  +s  𝑌 ) }  <<s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) )  ↔  ( ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) )  ∈   No   ∧  ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  <<s  { ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) }  ∧  { ( ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) }  <<s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) ) ) | 
						
							| 14 | 6 13 | mpbird | ⊢ ( 𝜑  →  ( ( 𝑋  +s  𝑌 )  ∈   No   ∧  ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  <<s  { ( 𝑋  +s  𝑌 ) }  ∧  { ( 𝑋  +s  𝑌 ) }  <<s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) ) |