| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addsproplem.1 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 2 |  | addspropord.2 | ⊢ ( 𝜑  →  𝑋  ∈   No  ) | 
						
							| 3 |  | addspropord.3 | ⊢ ( 𝜑  →  𝑌  ∈   No  ) | 
						
							| 4 |  | addspropord.4 | ⊢ ( 𝜑  →  𝑍  ∈   No  ) | 
						
							| 5 |  | addspropord.5 | ⊢ ( 𝜑  →  𝑌  <s  𝑍 ) | 
						
							| 6 |  | addsproplem4.6 | ⊢ ( 𝜑  →  (  bday  ‘ 𝑌 )  ∈  (  bday  ‘ 𝑍 ) ) | 
						
							| 7 |  | uncom | ⊢ ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 8 | 7 | eleq2i | ⊢ ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  ↔  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) | 
						
							| 9 | 8 | imbi1i | ⊢ ( ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) )  ↔  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 10 | 9 | ralbii | ⊢ ( ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) )  ↔  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 11 | 10 | 2ralbii | ⊢ ( ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) )  ↔  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 12 | 1 11 | sylib | ⊢ ( 𝜑  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 13 | 12 2 4 | addsproplem3 | ⊢ ( 𝜑  →  ( ( 𝑋  +s  𝑍 )  ∈   No   ∧  ( { 𝑎  ∣  ∃ 𝑐  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑐  +s  𝑍 ) }  ∪  { 𝑏  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑏  =  ( 𝑋  +s  𝑑 ) } )  <<s  { ( 𝑋  +s  𝑍 ) }  ∧  { ( 𝑋  +s  𝑍 ) }  <<s  ( { 𝑒  ∣  ∃ 𝑔  ∈  (  R  ‘ 𝑋 ) 𝑒  =  ( 𝑔  +s  𝑍 ) }  ∪  { 𝑓  ∣  ∃ ℎ  ∈  (  R  ‘ 𝑍 ) 𝑓  =  ( 𝑋  +s  ℎ ) } ) ) ) | 
						
							| 14 | 13 | simp2d | ⊢ ( 𝜑  →  ( { 𝑎  ∣  ∃ 𝑐  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑐  +s  𝑍 ) }  ∪  { 𝑏  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑏  =  ( 𝑋  +s  𝑑 ) } )  <<s  { ( 𝑋  +s  𝑍 ) } ) | 
						
							| 15 |  | bdayelon | ⊢ (  bday  ‘ 𝑍 )  ∈  On | 
						
							| 16 |  | oldbday | ⊢ ( ( (  bday  ‘ 𝑍 )  ∈  On  ∧  𝑌  ∈   No  )  →  ( 𝑌  ∈  (  O  ‘ (  bday  ‘ 𝑍 ) )  ↔  (  bday  ‘ 𝑌 )  ∈  (  bday  ‘ 𝑍 ) ) ) | 
						
							| 17 | 15 3 16 | sylancr | ⊢ ( 𝜑  →  ( 𝑌  ∈  (  O  ‘ (  bday  ‘ 𝑍 ) )  ↔  (  bday  ‘ 𝑌 )  ∈  (  bday  ‘ 𝑍 ) ) ) | 
						
							| 18 | 6 17 | mpbird | ⊢ ( 𝜑  →  𝑌  ∈  (  O  ‘ (  bday  ‘ 𝑍 ) ) ) | 
						
							| 19 |  | breq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦  <s  𝑍  ↔  𝑌  <s  𝑍 ) ) | 
						
							| 20 |  | leftval | ⊢ (  L  ‘ 𝑍 )  =  { 𝑦  ∈  (  O  ‘ (  bday  ‘ 𝑍 ) )  ∣  𝑦  <s  𝑍 } | 
						
							| 21 | 19 20 | elrab2 | ⊢ ( 𝑌  ∈  (  L  ‘ 𝑍 )  ↔  ( 𝑌  ∈  (  O  ‘ (  bday  ‘ 𝑍 ) )  ∧  𝑌  <s  𝑍 ) ) | 
						
							| 22 | 18 5 21 | sylanbrc | ⊢ ( 𝜑  →  𝑌  ∈  (  L  ‘ 𝑍 ) ) | 
						
							| 23 |  | eqid | ⊢ ( 𝑋  +s  𝑌 )  =  ( 𝑋  +s  𝑌 ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑑  =  𝑌  →  ( 𝑋  +s  𝑑 )  =  ( 𝑋  +s  𝑌 ) ) | 
						
							| 25 | 24 | rspceeqv | ⊢ ( ( 𝑌  ∈  (  L  ‘ 𝑍 )  ∧  ( 𝑋  +s  𝑌 )  =  ( 𝑋  +s  𝑌 ) )  →  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) ( 𝑋  +s  𝑌 )  =  ( 𝑋  +s  𝑑 ) ) | 
						
							| 26 | 22 23 25 | sylancl | ⊢ ( 𝜑  →  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) ( 𝑋  +s  𝑌 )  =  ( 𝑋  +s  𝑑 ) ) | 
						
							| 27 |  | ovex | ⊢ ( 𝑋  +s  𝑌 )  ∈  V | 
						
							| 28 |  | eqeq1 | ⊢ ( 𝑏  =  ( 𝑋  +s  𝑌 )  →  ( 𝑏  =  ( 𝑋  +s  𝑑 )  ↔  ( 𝑋  +s  𝑌 )  =  ( 𝑋  +s  𝑑 ) ) ) | 
						
							| 29 | 28 | rexbidv | ⊢ ( 𝑏  =  ( 𝑋  +s  𝑌 )  →  ( ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑏  =  ( 𝑋  +s  𝑑 )  ↔  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) ( 𝑋  +s  𝑌 )  =  ( 𝑋  +s  𝑑 ) ) ) | 
						
							| 30 | 27 29 | elab | ⊢ ( ( 𝑋  +s  𝑌 )  ∈  { 𝑏  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑏  =  ( 𝑋  +s  𝑑 ) }  ↔  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) ( 𝑋  +s  𝑌 )  =  ( 𝑋  +s  𝑑 ) ) | 
						
							| 31 | 26 30 | sylibr | ⊢ ( 𝜑  →  ( 𝑋  +s  𝑌 )  ∈  { 𝑏  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑏  =  ( 𝑋  +s  𝑑 ) } ) | 
						
							| 32 |  | elun2 | ⊢ ( ( 𝑋  +s  𝑌 )  ∈  { 𝑏  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑏  =  ( 𝑋  +s  𝑑 ) }  →  ( 𝑋  +s  𝑌 )  ∈  ( { 𝑎  ∣  ∃ 𝑐  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑐  +s  𝑍 ) }  ∪  { 𝑏  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑏  =  ( 𝑋  +s  𝑑 ) } ) ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝜑  →  ( 𝑋  +s  𝑌 )  ∈  ( { 𝑎  ∣  ∃ 𝑐  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑐  +s  𝑍 ) }  ∪  { 𝑏  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑏  =  ( 𝑋  +s  𝑑 ) } ) ) | 
						
							| 34 |  | ovex | ⊢ ( 𝑋  +s  𝑍 )  ∈  V | 
						
							| 35 | 34 | snid | ⊢ ( 𝑋  +s  𝑍 )  ∈  { ( 𝑋  +s  𝑍 ) } | 
						
							| 36 | 35 | a1i | ⊢ ( 𝜑  →  ( 𝑋  +s  𝑍 )  ∈  { ( 𝑋  +s  𝑍 ) } ) | 
						
							| 37 | 14 33 36 | ssltsepcd | ⊢ ( 𝜑  →  ( 𝑋  +s  𝑌 )  <s  ( 𝑋  +s  𝑍 ) ) | 
						
							| 38 | 3 2 | addscomd | ⊢ ( 𝜑  →  ( 𝑌  +s  𝑋 )  =  ( 𝑋  +s  𝑌 ) ) | 
						
							| 39 | 4 2 | addscomd | ⊢ ( 𝜑  →  ( 𝑍  +s  𝑋 )  =  ( 𝑋  +s  𝑍 ) ) | 
						
							| 40 | 37 38 39 | 3brtr4d | ⊢ ( 𝜑  →  ( 𝑌  +s  𝑋 )  <s  ( 𝑍  +s  𝑋 ) ) |