Metamath Proof Explorer


Theorem addsproplem5

Description: Lemma for surreal addition properties. Show the second half of the inductive hypothesis when Z is older than Y . (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addsproplem.1 ( 𝜑 → ∀ 𝑥 No 𝑦 No 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) )
addspropord.2 ( 𝜑𝑋 No )
addspropord.3 ( 𝜑𝑌 No )
addspropord.4 ( 𝜑𝑍 No )
addspropord.5 ( 𝜑𝑌 <s 𝑍 )
addsproplem5.6 ( 𝜑 → ( bday 𝑍 ) ∈ ( bday 𝑌 ) )
Assertion addsproplem5 ( 𝜑 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) )

Proof

Step Hyp Ref Expression
1 addsproplem.1 ( 𝜑 → ∀ 𝑥 No 𝑦 No 𝑧 No ( ( ( ( bday 𝑥 ) +no ( bday 𝑦 ) ) ∪ ( ( bday 𝑥 ) +no ( bday 𝑧 ) ) ) ∈ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( bday 𝑋 ) +no ( bday 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) )
2 addspropord.2 ( 𝜑𝑋 No )
3 addspropord.3 ( 𝜑𝑌 No )
4 addspropord.4 ( 𝜑𝑍 No )
5 addspropord.5 ( 𝜑𝑌 <s 𝑍 )
6 addsproplem5.6 ( 𝜑 → ( bday 𝑍 ) ∈ ( bday 𝑌 ) )
7 1 2 3 addsproplem3 ( 𝜑 → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ∈ ( L ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ) } ) <<s { ( 𝑋 +s 𝑌 ) } ∧ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑎 ∣ ∃ 𝑐 ∈ ( R ‘ 𝑋 ) 𝑎 = ( 𝑐 +s 𝑌 ) } ∪ { 𝑏 ∣ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) ) )
8 7 simp3d ( 𝜑 → { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑎 ∣ ∃ 𝑐 ∈ ( R ‘ 𝑋 ) 𝑎 = ( 𝑐 +s 𝑌 ) } ∪ { 𝑏 ∣ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) )
9 ovex ( 𝑋 +s 𝑌 ) ∈ V
10 9 snid ( 𝑋 +s 𝑌 ) ∈ { ( 𝑋 +s 𝑌 ) }
11 10 a1i ( 𝜑 → ( 𝑋 +s 𝑌 ) ∈ { ( 𝑋 +s 𝑌 ) } )
12 bdayelon ( bday 𝑌 ) ∈ On
13 oldbday ( ( ( bday 𝑌 ) ∈ On ∧ 𝑍 No ) → ( 𝑍 ∈ ( O ‘ ( bday 𝑌 ) ) ↔ ( bday 𝑍 ) ∈ ( bday 𝑌 ) ) )
14 12 4 13 sylancr ( 𝜑 → ( 𝑍 ∈ ( O ‘ ( bday 𝑌 ) ) ↔ ( bday 𝑍 ) ∈ ( bday 𝑌 ) ) )
15 6 14 mpbird ( 𝜑𝑍 ∈ ( O ‘ ( bday 𝑌 ) ) )
16 breq2 ( 𝑧 = 𝑍 → ( 𝑌 <s 𝑧𝑌 <s 𝑍 ) )
17 rightval ( R ‘ 𝑌 ) = { 𝑧 ∈ ( O ‘ ( bday 𝑌 ) ) ∣ 𝑌 <s 𝑧 }
18 16 17 elrab2 ( 𝑍 ∈ ( R ‘ 𝑌 ) ↔ ( 𝑍 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑌 <s 𝑍 ) )
19 15 5 18 sylanbrc ( 𝜑𝑍 ∈ ( R ‘ 𝑌 ) )
20 eqid ( 𝑋 +s 𝑍 ) = ( 𝑋 +s 𝑍 )
21 oveq2 ( 𝑑 = 𝑍 → ( 𝑋 +s 𝑑 ) = ( 𝑋 +s 𝑍 ) )
22 21 rspceeqv ( ( 𝑍 ∈ ( R ‘ 𝑌 ) ∧ ( 𝑋 +s 𝑍 ) = ( 𝑋 +s 𝑍 ) ) → ∃ 𝑑 ∈ ( R ‘ 𝑌 ) ( 𝑋 +s 𝑍 ) = ( 𝑋 +s 𝑑 ) )
23 19 20 22 sylancl ( 𝜑 → ∃ 𝑑 ∈ ( R ‘ 𝑌 ) ( 𝑋 +s 𝑍 ) = ( 𝑋 +s 𝑑 ) )
24 ovex ( 𝑋 +s 𝑍 ) ∈ V
25 eqeq1 ( 𝑏 = ( 𝑋 +s 𝑍 ) → ( 𝑏 = ( 𝑋 +s 𝑑 ) ↔ ( 𝑋 +s 𝑍 ) = ( 𝑋 +s 𝑑 ) ) )
26 25 rexbidv ( 𝑏 = ( 𝑋 +s 𝑍 ) → ( ∃ 𝑑 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑑 ) ↔ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) ( 𝑋 +s 𝑍 ) = ( 𝑋 +s 𝑑 ) ) )
27 24 26 elab ( ( 𝑋 +s 𝑍 ) ∈ { 𝑏 ∣ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ↔ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) ( 𝑋 +s 𝑍 ) = ( 𝑋 +s 𝑑 ) )
28 23 27 sylibr ( 𝜑 → ( 𝑋 +s 𝑍 ) ∈ { 𝑏 ∣ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑑 ) } )
29 elun2 ( ( 𝑋 +s 𝑍 ) ∈ { 𝑏 ∣ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑑 ) } → ( 𝑋 +s 𝑍 ) ∈ ( { 𝑎 ∣ ∃ 𝑐 ∈ ( R ‘ 𝑋 ) 𝑎 = ( 𝑐 +s 𝑌 ) } ∪ { 𝑏 ∣ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) )
30 28 29 syl ( 𝜑 → ( 𝑋 +s 𝑍 ) ∈ ( { 𝑎 ∣ ∃ 𝑐 ∈ ( R ‘ 𝑋 ) 𝑎 = ( 𝑐 +s 𝑌 ) } ∪ { 𝑏 ∣ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) )
31 8 11 30 ssltsepcd ( 𝜑 → ( 𝑋 +s 𝑌 ) <s ( 𝑋 +s 𝑍 ) )
32 3 2 addscomd ( 𝜑 → ( 𝑌 +s 𝑋 ) = ( 𝑋 +s 𝑌 ) )
33 4 2 addscomd ( 𝜑 → ( 𝑍 +s 𝑋 ) = ( 𝑋 +s 𝑍 ) )
34 31 32 33 3brtr4d ( 𝜑 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) )