Step |
Hyp |
Ref |
Expression |
1 |
|
addsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
2 |
|
addspropord.2 |
⊢ ( 𝜑 → 𝑋 ∈ No ) |
3 |
|
addspropord.3 |
⊢ ( 𝜑 → 𝑌 ∈ No ) |
4 |
|
addspropord.4 |
⊢ ( 𝜑 → 𝑍 ∈ No ) |
5 |
|
addspropord.5 |
⊢ ( 𝜑 → 𝑌 <s 𝑍 ) |
6 |
|
addsproplem5.6 |
⊢ ( 𝜑 → ( bday ‘ 𝑍 ) ∈ ( bday ‘ 𝑌 ) ) |
7 |
1 2 3
|
addsproplem3 |
⊢ ( 𝜑 → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ℎ ∈ ( L ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) } ) <<s { ( 𝑋 +s 𝑌 ) } ∧ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑎 ∣ ∃ 𝑐 ∈ ( R ‘ 𝑋 ) 𝑎 = ( 𝑐 +s 𝑌 ) } ∪ { 𝑏 ∣ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) ) ) |
8 |
7
|
simp3d |
⊢ ( 𝜑 → { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑎 ∣ ∃ 𝑐 ∈ ( R ‘ 𝑋 ) 𝑎 = ( 𝑐 +s 𝑌 ) } ∪ { 𝑏 ∣ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) ) |
9 |
|
ovex |
⊢ ( 𝑋 +s 𝑌 ) ∈ V |
10 |
9
|
snid |
⊢ ( 𝑋 +s 𝑌 ) ∈ { ( 𝑋 +s 𝑌 ) } |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( 𝑋 +s 𝑌 ) ∈ { ( 𝑋 +s 𝑌 ) } ) |
12 |
|
bdayelon |
⊢ ( bday ‘ 𝑌 ) ∈ On |
13 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝑌 ) ∈ On ∧ 𝑍 ∈ No ) → ( 𝑍 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ↔ ( bday ‘ 𝑍 ) ∈ ( bday ‘ 𝑌 ) ) ) |
14 |
12 4 13
|
sylancr |
⊢ ( 𝜑 → ( 𝑍 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ↔ ( bday ‘ 𝑍 ) ∈ ( bday ‘ 𝑌 ) ) ) |
15 |
6 14
|
mpbird |
⊢ ( 𝜑 → 𝑍 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ) |
16 |
|
breq2 |
⊢ ( 𝑧 = 𝑍 → ( 𝑌 <s 𝑧 ↔ 𝑌 <s 𝑍 ) ) |
17 |
|
rightval |
⊢ ( R ‘ 𝑌 ) = { 𝑧 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑌 <s 𝑧 } |
18 |
16 17
|
elrab2 |
⊢ ( 𝑍 ∈ ( R ‘ 𝑌 ) ↔ ( 𝑍 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑌 <s 𝑍 ) ) |
19 |
15 5 18
|
sylanbrc |
⊢ ( 𝜑 → 𝑍 ∈ ( R ‘ 𝑌 ) ) |
20 |
|
eqid |
⊢ ( 𝑋 +s 𝑍 ) = ( 𝑋 +s 𝑍 ) |
21 |
|
oveq2 |
⊢ ( 𝑑 = 𝑍 → ( 𝑋 +s 𝑑 ) = ( 𝑋 +s 𝑍 ) ) |
22 |
21
|
rspceeqv |
⊢ ( ( 𝑍 ∈ ( R ‘ 𝑌 ) ∧ ( 𝑋 +s 𝑍 ) = ( 𝑋 +s 𝑍 ) ) → ∃ 𝑑 ∈ ( R ‘ 𝑌 ) ( 𝑋 +s 𝑍 ) = ( 𝑋 +s 𝑑 ) ) |
23 |
19 20 22
|
sylancl |
⊢ ( 𝜑 → ∃ 𝑑 ∈ ( R ‘ 𝑌 ) ( 𝑋 +s 𝑍 ) = ( 𝑋 +s 𝑑 ) ) |
24 |
|
ovex |
⊢ ( 𝑋 +s 𝑍 ) ∈ V |
25 |
|
eqeq1 |
⊢ ( 𝑏 = ( 𝑋 +s 𝑍 ) → ( 𝑏 = ( 𝑋 +s 𝑑 ) ↔ ( 𝑋 +s 𝑍 ) = ( 𝑋 +s 𝑑 ) ) ) |
26 |
25
|
rexbidv |
⊢ ( 𝑏 = ( 𝑋 +s 𝑍 ) → ( ∃ 𝑑 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑑 ) ↔ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) ( 𝑋 +s 𝑍 ) = ( 𝑋 +s 𝑑 ) ) ) |
27 |
24 26
|
elab |
⊢ ( ( 𝑋 +s 𝑍 ) ∈ { 𝑏 ∣ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ↔ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) ( 𝑋 +s 𝑍 ) = ( 𝑋 +s 𝑑 ) ) |
28 |
23 27
|
sylibr |
⊢ ( 𝜑 → ( 𝑋 +s 𝑍 ) ∈ { 𝑏 ∣ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) |
29 |
|
elun2 |
⊢ ( ( 𝑋 +s 𝑍 ) ∈ { 𝑏 ∣ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑑 ) } → ( 𝑋 +s 𝑍 ) ∈ ( { 𝑎 ∣ ∃ 𝑐 ∈ ( R ‘ 𝑋 ) 𝑎 = ( 𝑐 +s 𝑌 ) } ∪ { 𝑏 ∣ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) ) |
30 |
28 29
|
syl |
⊢ ( 𝜑 → ( 𝑋 +s 𝑍 ) ∈ ( { 𝑎 ∣ ∃ 𝑐 ∈ ( R ‘ 𝑋 ) 𝑎 = ( 𝑐 +s 𝑌 ) } ∪ { 𝑏 ∣ ∃ 𝑑 ∈ ( R ‘ 𝑌 ) 𝑏 = ( 𝑋 +s 𝑑 ) } ) ) |
31 |
8 11 30
|
ssltsepcd |
⊢ ( 𝜑 → ( 𝑋 +s 𝑌 ) <s ( 𝑋 +s 𝑍 ) ) |
32 |
3 2
|
addscomd |
⊢ ( 𝜑 → ( 𝑌 +s 𝑋 ) = ( 𝑋 +s 𝑌 ) ) |
33 |
4 2
|
addscomd |
⊢ ( 𝜑 → ( 𝑍 +s 𝑋 ) = ( 𝑋 +s 𝑍 ) ) |
34 |
31 32 33
|
3brtr4d |
⊢ ( 𝜑 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) |