| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addsproplem.1 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 2 |  | addspropord.2 | ⊢ ( 𝜑  →  𝑋  ∈   No  ) | 
						
							| 3 |  | addspropord.3 | ⊢ ( 𝜑  →  𝑌  ∈   No  ) | 
						
							| 4 |  | addspropord.4 | ⊢ ( 𝜑  →  𝑍  ∈   No  ) | 
						
							| 5 |  | addspropord.5 | ⊢ ( 𝜑  →  𝑌  <s  𝑍 ) | 
						
							| 6 |  | addsproplem6.6 | ⊢ ( 𝜑  →  (  bday  ‘ 𝑌 )  =  (  bday  ‘ 𝑍 ) ) | 
						
							| 7 |  | nodense | ⊢ ( ( ( 𝑌  ∈   No   ∧  𝑍  ∈   No  )  ∧  ( (  bday  ‘ 𝑌 )  =  (  bday  ‘ 𝑍 )  ∧  𝑌  <s  𝑍 ) )  →  ∃ 𝑚  ∈   No  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) | 
						
							| 8 | 3 4 6 5 7 | syl22anc | ⊢ ( 𝜑  →  ∃ 𝑚  ∈   No  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) | 
						
							| 9 | 1 2 3 | addsproplem3 | ⊢ ( 𝜑  →  ( ( 𝑋  +s  𝑌 )  ∈   No   ∧  ( { 𝑎  ∣  ∃ 𝑏  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑏  +s  𝑌 ) }  ∪  { 𝑐  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑌 ) 𝑐  =  ( 𝑋  +s  𝑑 ) } )  <<s  { ( 𝑋  +s  𝑌 ) }  ∧  { ( 𝑋  +s  𝑌 ) }  <<s  ( { 𝑒  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝑋 ) 𝑒  =  ( 𝑓  +s  𝑌 ) }  ∪  { 𝑔  ∣  ∃ ℎ  ∈  (  R  ‘ 𝑌 ) 𝑔  =  ( 𝑋  +s  ℎ ) } ) ) ) | 
						
							| 10 | 9 | simp1d | ⊢ ( 𝜑  →  ( 𝑋  +s  𝑌 )  ∈   No  ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( 𝑋  +s  𝑌 )  ∈   No  ) | 
						
							| 12 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 13 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  𝑋  ∈   No  ) | 
						
							| 14 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  𝑚  ∈   No  ) | 
						
							| 15 |  | unidm | ⊢ ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) ) )  =  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) ) | 
						
							| 16 |  | simprr1 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 ) ) | 
						
							| 17 |  | bdayelon | ⊢ (  bday  ‘ 𝑚 )  ∈  On | 
						
							| 18 |  | bdayelon | ⊢ (  bday  ‘ 𝑌 )  ∈  On | 
						
							| 19 |  | bdayelon | ⊢ (  bday  ‘ 𝑋 )  ∈  On | 
						
							| 20 |  | naddel2 | ⊢ ( ( (  bday  ‘ 𝑚 )  ∈  On  ∧  (  bday  ‘ 𝑌 )  ∈  On  ∧  (  bday  ‘ 𝑋 )  ∈  On )  →  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ↔  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) | 
						
							| 21 | 17 18 19 20 | mp3an | ⊢ ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ↔  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 22 | 16 21 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 23 |  | elun1 | ⊢ ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 25 | 15 24 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 26 | 12 13 14 14 25 | addsproplem1 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( ( 𝑋  +s  𝑚 )  ∈   No   ∧  ( 𝑚  <s  𝑚  →  ( 𝑚  +s  𝑋 )  <s  ( 𝑚  +s  𝑋 ) ) ) ) | 
						
							| 27 | 26 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( 𝑋  +s  𝑚 )  ∈   No  ) | 
						
							| 28 |  | uncom | ⊢ ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 29 | 28 | eleq2i | ⊢ ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  ↔  ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) | 
						
							| 30 | 29 | imbi1i | ⊢ ( ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) )  ↔  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 31 | 30 | ralbii | ⊢ ( ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) )  ↔  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 32 | 31 | 2ralbii | ⊢ ( ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) )  ↔  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 33 | 1 32 | sylib | ⊢ ( 𝜑  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 34 | 33 2 4 | addsproplem3 | ⊢ ( 𝜑  →  ( ( 𝑋  +s  𝑍 )  ∈   No   ∧  ( { 𝑎  ∣  ∃ 𝑏  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑏  +s  𝑍 ) }  ∪  { 𝑐  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑐  =  ( 𝑋  +s  𝑑 ) } )  <<s  { ( 𝑋  +s  𝑍 ) }  ∧  { ( 𝑋  +s  𝑍 ) }  <<s  ( { 𝑒  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝑋 ) 𝑒  =  ( 𝑓  +s  𝑍 ) }  ∪  { 𝑔  ∣  ∃ ℎ  ∈  (  R  ‘ 𝑍 ) 𝑔  =  ( 𝑋  +s  ℎ ) } ) ) ) | 
						
							| 35 | 34 | simp1d | ⊢ ( 𝜑  →  ( 𝑋  +s  𝑍 )  ∈   No  ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( 𝑋  +s  𝑍 )  ∈   No  ) | 
						
							| 37 | 9 | simp3d | ⊢ ( 𝜑  →  { ( 𝑋  +s  𝑌 ) }  <<s  ( { 𝑒  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝑋 ) 𝑒  =  ( 𝑓  +s  𝑌 ) }  ∪  { 𝑔  ∣  ∃ ℎ  ∈  (  R  ‘ 𝑌 ) 𝑔  =  ( 𝑋  +s  ℎ ) } ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  { ( 𝑋  +s  𝑌 ) }  <<s  ( { 𝑒  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝑋 ) 𝑒  =  ( 𝑓  +s  𝑌 ) }  ∪  { 𝑔  ∣  ∃ ℎ  ∈  (  R  ‘ 𝑌 ) 𝑔  =  ( 𝑋  +s  ℎ ) } ) ) | 
						
							| 39 |  | ovex | ⊢ ( 𝑋  +s  𝑌 )  ∈  V | 
						
							| 40 | 39 | snid | ⊢ ( 𝑋  +s  𝑌 )  ∈  { ( 𝑋  +s  𝑌 ) } | 
						
							| 41 | 40 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( 𝑋  +s  𝑌 )  ∈  { ( 𝑋  +s  𝑌 ) } ) | 
						
							| 42 |  | oldbday | ⊢ ( ( (  bday  ‘ 𝑌 )  ∈  On  ∧  𝑚  ∈   No  )  →  ( 𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ↔  (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 43 | 18 14 42 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( 𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ↔  (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 44 | 16 43 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) ) ) | 
						
							| 45 |  | simprr2 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  𝑌  <s  𝑚 ) | 
						
							| 46 |  | breq2 | ⊢ ( 𝑎  =  𝑚  →  ( 𝑌  <s  𝑎  ↔  𝑌  <s  𝑚 ) ) | 
						
							| 47 |  | rightval | ⊢ (  R  ‘ 𝑌 )  =  { 𝑎  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ∣  𝑌  <s  𝑎 } | 
						
							| 48 | 46 47 | elrab2 | ⊢ ( 𝑚  ∈  (  R  ‘ 𝑌 )  ↔  ( 𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ∧  𝑌  <s  𝑚 ) ) | 
						
							| 49 | 44 45 48 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  𝑚  ∈  (  R  ‘ 𝑌 ) ) | 
						
							| 50 |  | eqid | ⊢ ( 𝑋  +s  𝑚 )  =  ( 𝑋  +s  𝑚 ) | 
						
							| 51 |  | oveq2 | ⊢ ( ℎ  =  𝑚  →  ( 𝑋  +s  ℎ )  =  ( 𝑋  +s  𝑚 ) ) | 
						
							| 52 | 51 | rspceeqv | ⊢ ( ( 𝑚  ∈  (  R  ‘ 𝑌 )  ∧  ( 𝑋  +s  𝑚 )  =  ( 𝑋  +s  𝑚 ) )  →  ∃ ℎ  ∈  (  R  ‘ 𝑌 ) ( 𝑋  +s  𝑚 )  =  ( 𝑋  +s  ℎ ) ) | 
						
							| 53 | 49 50 52 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ∃ ℎ  ∈  (  R  ‘ 𝑌 ) ( 𝑋  +s  𝑚 )  =  ( 𝑋  +s  ℎ ) ) | 
						
							| 54 |  | ovex | ⊢ ( 𝑋  +s  𝑚 )  ∈  V | 
						
							| 55 |  | eqeq1 | ⊢ ( 𝑔  =  ( 𝑋  +s  𝑚 )  →  ( 𝑔  =  ( 𝑋  +s  ℎ )  ↔  ( 𝑋  +s  𝑚 )  =  ( 𝑋  +s  ℎ ) ) ) | 
						
							| 56 | 55 | rexbidv | ⊢ ( 𝑔  =  ( 𝑋  +s  𝑚 )  →  ( ∃ ℎ  ∈  (  R  ‘ 𝑌 ) 𝑔  =  ( 𝑋  +s  ℎ )  ↔  ∃ ℎ  ∈  (  R  ‘ 𝑌 ) ( 𝑋  +s  𝑚 )  =  ( 𝑋  +s  ℎ ) ) ) | 
						
							| 57 | 54 56 | elab | ⊢ ( ( 𝑋  +s  𝑚 )  ∈  { 𝑔  ∣  ∃ ℎ  ∈  (  R  ‘ 𝑌 ) 𝑔  =  ( 𝑋  +s  ℎ ) }  ↔  ∃ ℎ  ∈  (  R  ‘ 𝑌 ) ( 𝑋  +s  𝑚 )  =  ( 𝑋  +s  ℎ ) ) | 
						
							| 58 | 53 57 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( 𝑋  +s  𝑚 )  ∈  { 𝑔  ∣  ∃ ℎ  ∈  (  R  ‘ 𝑌 ) 𝑔  =  ( 𝑋  +s  ℎ ) } ) | 
						
							| 59 |  | elun2 | ⊢ ( ( 𝑋  +s  𝑚 )  ∈  { 𝑔  ∣  ∃ ℎ  ∈  (  R  ‘ 𝑌 ) 𝑔  =  ( 𝑋  +s  ℎ ) }  →  ( 𝑋  +s  𝑚 )  ∈  ( { 𝑒  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝑋 ) 𝑒  =  ( 𝑓  +s  𝑌 ) }  ∪  { 𝑔  ∣  ∃ ℎ  ∈  (  R  ‘ 𝑌 ) 𝑔  =  ( 𝑋  +s  ℎ ) } ) ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( 𝑋  +s  𝑚 )  ∈  ( { 𝑒  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝑋 ) 𝑒  =  ( 𝑓  +s  𝑌 ) }  ∪  { 𝑔  ∣  ∃ ℎ  ∈  (  R  ‘ 𝑌 ) 𝑔  =  ( 𝑋  +s  ℎ ) } ) ) | 
						
							| 61 | 38 41 60 | ssltsepcd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( 𝑋  +s  𝑌 )  <s  ( 𝑋  +s  𝑚 ) ) | 
						
							| 62 | 33 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 63 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  𝑍  ∈   No  ) | 
						
							| 64 | 62 13 63 | addsproplem3 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( ( 𝑋  +s  𝑍 )  ∈   No   ∧  ( { 𝑎  ∣  ∃ 𝑏  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑏  +s  𝑍 ) }  ∪  { 𝑐  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑐  =  ( 𝑋  +s  𝑑 ) } )  <<s  { ( 𝑋  +s  𝑍 ) }  ∧  { ( 𝑋  +s  𝑍 ) }  <<s  ( { 𝑒  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝑋 ) 𝑒  =  ( 𝑓  +s  𝑍 ) }  ∪  { 𝑔  ∣  ∃ ℎ  ∈  (  R  ‘ 𝑍 ) 𝑔  =  ( 𝑋  +s  ℎ ) } ) ) ) | 
						
							| 65 | 64 | simp2d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( { 𝑎  ∣  ∃ 𝑏  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑏  +s  𝑍 ) }  ∪  { 𝑐  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑐  =  ( 𝑋  +s  𝑑 ) } )  <<s  { ( 𝑋  +s  𝑍 ) } ) | 
						
							| 66 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  (  bday  ‘ 𝑌 )  =  (  bday  ‘ 𝑍 ) ) | 
						
							| 67 | 16 66 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑍 ) ) | 
						
							| 68 |  | bdayelon | ⊢ (  bday  ‘ 𝑍 )  ∈  On | 
						
							| 69 |  | oldbday | ⊢ ( ( (  bday  ‘ 𝑍 )  ∈  On  ∧  𝑚  ∈   No  )  →  ( 𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑍 ) )  ↔  (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑍 ) ) ) | 
						
							| 70 | 68 14 69 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( 𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑍 ) )  ↔  (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑍 ) ) ) | 
						
							| 71 | 67 70 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑍 ) ) ) | 
						
							| 72 |  | simprr3 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  𝑚  <s  𝑍 ) | 
						
							| 73 |  | breq1 | ⊢ ( 𝑎  =  𝑚  →  ( 𝑎  <s  𝑍  ↔  𝑚  <s  𝑍 ) ) | 
						
							| 74 |  | leftval | ⊢ (  L  ‘ 𝑍 )  =  { 𝑎  ∈  (  O  ‘ (  bday  ‘ 𝑍 ) )  ∣  𝑎  <s  𝑍 } | 
						
							| 75 | 73 74 | elrab2 | ⊢ ( 𝑚  ∈  (  L  ‘ 𝑍 )  ↔  ( 𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑍 ) )  ∧  𝑚  <s  𝑍 ) ) | 
						
							| 76 | 71 72 75 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  𝑚  ∈  (  L  ‘ 𝑍 ) ) | 
						
							| 77 |  | oveq2 | ⊢ ( 𝑑  =  𝑚  →  ( 𝑋  +s  𝑑 )  =  ( 𝑋  +s  𝑚 ) ) | 
						
							| 78 | 77 | rspceeqv | ⊢ ( ( 𝑚  ∈  (  L  ‘ 𝑍 )  ∧  ( 𝑋  +s  𝑚 )  =  ( 𝑋  +s  𝑚 ) )  →  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) ( 𝑋  +s  𝑚 )  =  ( 𝑋  +s  𝑑 ) ) | 
						
							| 79 | 76 50 78 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) ( 𝑋  +s  𝑚 )  =  ( 𝑋  +s  𝑑 ) ) | 
						
							| 80 |  | eqeq1 | ⊢ ( 𝑐  =  ( 𝑋  +s  𝑚 )  →  ( 𝑐  =  ( 𝑋  +s  𝑑 )  ↔  ( 𝑋  +s  𝑚 )  =  ( 𝑋  +s  𝑑 ) ) ) | 
						
							| 81 | 80 | rexbidv | ⊢ ( 𝑐  =  ( 𝑋  +s  𝑚 )  →  ( ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑐  =  ( 𝑋  +s  𝑑 )  ↔  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) ( 𝑋  +s  𝑚 )  =  ( 𝑋  +s  𝑑 ) ) ) | 
						
							| 82 | 54 81 | elab | ⊢ ( ( 𝑋  +s  𝑚 )  ∈  { 𝑐  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑐  =  ( 𝑋  +s  𝑑 ) }  ↔  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) ( 𝑋  +s  𝑚 )  =  ( 𝑋  +s  𝑑 ) ) | 
						
							| 83 | 79 82 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( 𝑋  +s  𝑚 )  ∈  { 𝑐  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑐  =  ( 𝑋  +s  𝑑 ) } ) | 
						
							| 84 |  | elun2 | ⊢ ( ( 𝑋  +s  𝑚 )  ∈  { 𝑐  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑐  =  ( 𝑋  +s  𝑑 ) }  →  ( 𝑋  +s  𝑚 )  ∈  ( { 𝑎  ∣  ∃ 𝑏  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑏  +s  𝑍 ) }  ∪  { 𝑐  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑐  =  ( 𝑋  +s  𝑑 ) } ) ) | 
						
							| 85 | 83 84 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( 𝑋  +s  𝑚 )  ∈  ( { 𝑎  ∣  ∃ 𝑏  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑏  +s  𝑍 ) }  ∪  { 𝑐  ∣  ∃ 𝑑  ∈  (  L  ‘ 𝑍 ) 𝑐  =  ( 𝑋  +s  𝑑 ) } ) ) | 
						
							| 86 |  | ovex | ⊢ ( 𝑋  +s  𝑍 )  ∈  V | 
						
							| 87 | 86 | snid | ⊢ ( 𝑋  +s  𝑍 )  ∈  { ( 𝑋  +s  𝑍 ) } | 
						
							| 88 | 87 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( 𝑋  +s  𝑍 )  ∈  { ( 𝑋  +s  𝑍 ) } ) | 
						
							| 89 | 65 85 88 | ssltsepcd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( 𝑋  +s  𝑚 )  <s  ( 𝑋  +s  𝑍 ) ) | 
						
							| 90 | 11 27 36 61 89 | slttrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈   No   ∧  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ∧  𝑌  <s  𝑚  ∧  𝑚  <s  𝑍 ) ) )  →  ( 𝑋  +s  𝑌 )  <s  ( 𝑋  +s  𝑍 ) ) | 
						
							| 91 | 8 90 | rexlimddv | ⊢ ( 𝜑  →  ( 𝑋  +s  𝑌 )  <s  ( 𝑋  +s  𝑍 ) ) | 
						
							| 92 | 3 2 | addscomd | ⊢ ( 𝜑  →  ( 𝑌  +s  𝑋 )  =  ( 𝑋  +s  𝑌 ) ) | 
						
							| 93 | 4 2 | addscomd | ⊢ ( 𝜑  →  ( 𝑍  +s  𝑋 )  =  ( 𝑋  +s  𝑍 ) ) | 
						
							| 94 | 91 92 93 | 3brtr4d | ⊢ ( 𝜑  →  ( 𝑌  +s  𝑋 )  <s  ( 𝑍  +s  𝑋 ) ) |