Step |
Hyp |
Ref |
Expression |
1 |
|
addsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
2 |
|
addspropord.2 |
⊢ ( 𝜑 → 𝑋 ∈ No ) |
3 |
|
addspropord.3 |
⊢ ( 𝜑 → 𝑌 ∈ No ) |
4 |
|
addspropord.4 |
⊢ ( 𝜑 → 𝑍 ∈ No ) |
5 |
|
addspropord.5 |
⊢ ( 𝜑 → 𝑌 <s 𝑍 ) |
6 |
|
addsproplem6.6 |
⊢ ( 𝜑 → ( bday ‘ 𝑌 ) = ( bday ‘ 𝑍 ) ) |
7 |
|
nodense |
⊢ ( ( ( 𝑌 ∈ No ∧ 𝑍 ∈ No ) ∧ ( ( bday ‘ 𝑌 ) = ( bday ‘ 𝑍 ) ∧ 𝑌 <s 𝑍 ) ) → ∃ 𝑚 ∈ No ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) |
8 |
3 4 6 5 7
|
syl22anc |
⊢ ( 𝜑 → ∃ 𝑚 ∈ No ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) |
9 |
1 2 3
|
addsproplem3 |
⊢ ( 𝜑 → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑌 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑌 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑌 ) } ∧ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) } ) ) ) |
10 |
9
|
simp1d |
⊢ ( 𝜑 → ( 𝑋 +s 𝑌 ) ∈ No ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑌 ) ∈ No ) |
12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
13 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → 𝑋 ∈ No ) |
14 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → 𝑚 ∈ No ) |
15 |
|
unidm |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ) = ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) |
16 |
|
simprr1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ) |
17 |
|
bdayelon |
⊢ ( bday ‘ 𝑚 ) ∈ On |
18 |
|
bdayelon |
⊢ ( bday ‘ 𝑌 ) ∈ On |
19 |
|
bdayelon |
⊢ ( bday ‘ 𝑋 ) ∈ On |
20 |
|
naddel2 |
⊢ ( ( ( bday ‘ 𝑚 ) ∈ On ∧ ( bday ‘ 𝑌 ) ∈ On ∧ ( bday ‘ 𝑋 ) ∈ On ) → ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ↔ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
21 |
17 18 19 20
|
mp3an |
⊢ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ↔ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
22 |
16 21
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
23 |
|
elun1 |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
25 |
15 24
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑚 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
26 |
12 13 14 14 25
|
addsproplem1 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( ( 𝑋 +s 𝑚 ) ∈ No ∧ ( 𝑚 <s 𝑚 → ( 𝑚 +s 𝑋 ) <s ( 𝑚 +s 𝑋 ) ) ) ) |
27 |
26
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑚 ) ∈ No ) |
28 |
|
uncom |
⊢ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) = ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) |
29 |
28
|
eleq2i |
⊢ ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ↔ ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) ) |
30 |
29
|
imbi1i |
⊢ ( ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
31 |
30
|
ralbii |
⊢ ( ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
32 |
31
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
33 |
1 32
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
34 |
33 2 4
|
addsproplem3 |
⊢ ( 𝜑 → ( ( 𝑋 +s 𝑍 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑍 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑍 ) } ∧ { ( 𝑋 +s 𝑍 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑍 ) } ∪ { 𝑔 ∣ ∃ ℎ ∈ ( R ‘ 𝑍 ) 𝑔 = ( 𝑋 +s ℎ ) } ) ) ) |
35 |
34
|
simp1d |
⊢ ( 𝜑 → ( 𝑋 +s 𝑍 ) ∈ No ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑍 ) ∈ No ) |
37 |
9
|
simp3d |
⊢ ( 𝜑 → { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) } ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) } ) ) |
39 |
|
ovex |
⊢ ( 𝑋 +s 𝑌 ) ∈ V |
40 |
39
|
snid |
⊢ ( 𝑋 +s 𝑌 ) ∈ { ( 𝑋 +s 𝑌 ) } |
41 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑌 ) ∈ { ( 𝑋 +s 𝑌 ) } ) |
42 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝑌 ) ∈ On ∧ 𝑚 ∈ No ) → ( 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ↔ ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ) ) |
43 |
18 14 42
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ↔ ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ) ) |
44 |
16 43
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ) |
45 |
|
simprr2 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → 𝑌 <s 𝑚 ) |
46 |
|
breq2 |
⊢ ( 𝑎 = 𝑚 → ( 𝑌 <s 𝑎 ↔ 𝑌 <s 𝑚 ) ) |
47 |
|
rightval |
⊢ ( R ‘ 𝑌 ) = { 𝑎 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑌 <s 𝑎 } |
48 |
46 47
|
elrab2 |
⊢ ( 𝑚 ∈ ( R ‘ 𝑌 ) ↔ ( 𝑚 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑌 <s 𝑚 ) ) |
49 |
44 45 48
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → 𝑚 ∈ ( R ‘ 𝑌 ) ) |
50 |
|
eqid |
⊢ ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑚 ) |
51 |
|
oveq2 |
⊢ ( ℎ = 𝑚 → ( 𝑋 +s ℎ ) = ( 𝑋 +s 𝑚 ) ) |
52 |
51
|
rspceeqv |
⊢ ( ( 𝑚 ∈ ( R ‘ 𝑌 ) ∧ ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑚 ) ) → ∃ ℎ ∈ ( R ‘ 𝑌 ) ( 𝑋 +s 𝑚 ) = ( 𝑋 +s ℎ ) ) |
53 |
49 50 52
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ∃ ℎ ∈ ( R ‘ 𝑌 ) ( 𝑋 +s 𝑚 ) = ( 𝑋 +s ℎ ) ) |
54 |
|
ovex |
⊢ ( 𝑋 +s 𝑚 ) ∈ V |
55 |
|
eqeq1 |
⊢ ( 𝑔 = ( 𝑋 +s 𝑚 ) → ( 𝑔 = ( 𝑋 +s ℎ ) ↔ ( 𝑋 +s 𝑚 ) = ( 𝑋 +s ℎ ) ) ) |
56 |
55
|
rexbidv |
⊢ ( 𝑔 = ( 𝑋 +s 𝑚 ) → ( ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) ↔ ∃ ℎ ∈ ( R ‘ 𝑌 ) ( 𝑋 +s 𝑚 ) = ( 𝑋 +s ℎ ) ) ) |
57 |
54 56
|
elab |
⊢ ( ( 𝑋 +s 𝑚 ) ∈ { 𝑔 ∣ ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) } ↔ ∃ ℎ ∈ ( R ‘ 𝑌 ) ( 𝑋 +s 𝑚 ) = ( 𝑋 +s ℎ ) ) |
58 |
53 57
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑚 ) ∈ { 𝑔 ∣ ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) } ) |
59 |
|
elun2 |
⊢ ( ( 𝑋 +s 𝑚 ) ∈ { 𝑔 ∣ ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) } → ( 𝑋 +s 𝑚 ) ∈ ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) } ) ) |
60 |
58 59
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑚 ) ∈ ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑌 ) } ∪ { 𝑔 ∣ ∃ ℎ ∈ ( R ‘ 𝑌 ) 𝑔 = ( 𝑋 +s ℎ ) } ) ) |
61 |
38 41 60
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑌 ) <s ( 𝑋 +s 𝑚 ) ) |
62 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
63 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → 𝑍 ∈ No ) |
64 |
62 13 63
|
addsproplem3 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( ( 𝑋 +s 𝑍 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑍 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑍 ) } ∧ { ( 𝑋 +s 𝑍 ) } <<s ( { 𝑒 ∣ ∃ 𝑓 ∈ ( R ‘ 𝑋 ) 𝑒 = ( 𝑓 +s 𝑍 ) } ∪ { 𝑔 ∣ ∃ ℎ ∈ ( R ‘ 𝑍 ) 𝑔 = ( 𝑋 +s ℎ ) } ) ) ) |
65 |
64
|
simp2d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑍 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) <<s { ( 𝑋 +s 𝑍 ) } ) |
66 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( bday ‘ 𝑌 ) = ( bday ‘ 𝑍 ) ) |
67 |
16 66
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑍 ) ) |
68 |
|
bdayelon |
⊢ ( bday ‘ 𝑍 ) ∈ On |
69 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝑍 ) ∈ On ∧ 𝑚 ∈ No ) → ( 𝑚 ∈ ( O ‘ ( bday ‘ 𝑍 ) ) ↔ ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑍 ) ) ) |
70 |
68 14 69
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( 𝑚 ∈ ( O ‘ ( bday ‘ 𝑍 ) ) ↔ ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑍 ) ) ) |
71 |
67 70
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → 𝑚 ∈ ( O ‘ ( bday ‘ 𝑍 ) ) ) |
72 |
|
simprr3 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → 𝑚 <s 𝑍 ) |
73 |
|
breq1 |
⊢ ( 𝑎 = 𝑚 → ( 𝑎 <s 𝑍 ↔ 𝑚 <s 𝑍 ) ) |
74 |
|
leftval |
⊢ ( L ‘ 𝑍 ) = { 𝑎 ∈ ( O ‘ ( bday ‘ 𝑍 ) ) ∣ 𝑎 <s 𝑍 } |
75 |
73 74
|
elrab2 |
⊢ ( 𝑚 ∈ ( L ‘ 𝑍 ) ↔ ( 𝑚 ∈ ( O ‘ ( bday ‘ 𝑍 ) ) ∧ 𝑚 <s 𝑍 ) ) |
76 |
71 72 75
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → 𝑚 ∈ ( L ‘ 𝑍 ) ) |
77 |
|
oveq2 |
⊢ ( 𝑑 = 𝑚 → ( 𝑋 +s 𝑑 ) = ( 𝑋 +s 𝑚 ) ) |
78 |
77
|
rspceeqv |
⊢ ( ( 𝑚 ∈ ( L ‘ 𝑍 ) ∧ ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑚 ) ) → ∃ 𝑑 ∈ ( L ‘ 𝑍 ) ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑑 ) ) |
79 |
76 50 78
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ∃ 𝑑 ∈ ( L ‘ 𝑍 ) ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑑 ) ) |
80 |
|
eqeq1 |
⊢ ( 𝑐 = ( 𝑋 +s 𝑚 ) → ( 𝑐 = ( 𝑋 +s 𝑑 ) ↔ ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑑 ) ) ) |
81 |
80
|
rexbidv |
⊢ ( 𝑐 = ( 𝑋 +s 𝑚 ) → ( ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) ↔ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑑 ) ) ) |
82 |
54 81
|
elab |
⊢ ( ( 𝑋 +s 𝑚 ) ∈ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ↔ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) ( 𝑋 +s 𝑚 ) = ( 𝑋 +s 𝑑 ) ) |
83 |
79 82
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑚 ) ∈ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) |
84 |
|
elun2 |
⊢ ( ( 𝑋 +s 𝑚 ) ∈ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) } → ( 𝑋 +s 𝑚 ) ∈ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑍 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) ) |
85 |
83 84
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑚 ) ∈ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝑋 ) 𝑎 = ( 𝑏 +s 𝑍 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( L ‘ 𝑍 ) 𝑐 = ( 𝑋 +s 𝑑 ) } ) ) |
86 |
|
ovex |
⊢ ( 𝑋 +s 𝑍 ) ∈ V |
87 |
86
|
snid |
⊢ ( 𝑋 +s 𝑍 ) ∈ { ( 𝑋 +s 𝑍 ) } |
88 |
87
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑍 ) ∈ { ( 𝑋 +s 𝑍 ) } ) |
89 |
65 85 88
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑚 ) <s ( 𝑋 +s 𝑍 ) ) |
90 |
11 27 36 61 89
|
slttrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ No ∧ ( ( bday ‘ 𝑚 ) ∈ ( bday ‘ 𝑌 ) ∧ 𝑌 <s 𝑚 ∧ 𝑚 <s 𝑍 ) ) ) → ( 𝑋 +s 𝑌 ) <s ( 𝑋 +s 𝑍 ) ) |
91 |
8 90
|
rexlimddv |
⊢ ( 𝜑 → ( 𝑋 +s 𝑌 ) <s ( 𝑋 +s 𝑍 ) ) |
92 |
3 2
|
addscomd |
⊢ ( 𝜑 → ( 𝑌 +s 𝑋 ) = ( 𝑋 +s 𝑌 ) ) |
93 |
4 2
|
addscomd |
⊢ ( 𝜑 → ( 𝑍 +s 𝑋 ) = ( 𝑋 +s 𝑍 ) ) |
94 |
91 92 93
|
3brtr4d |
⊢ ( 𝜑 → ( 𝑌 +s 𝑋 ) <s ( 𝑍 +s 𝑋 ) ) |