Step |
Hyp |
Ref |
Expression |
1 |
|
addsproplem.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ) |
2 |
|
addsproplem1.2 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
3 |
|
addsproplem1.3 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
4 |
|
addsproplem1.4 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
5 |
|
addsproplem1.5 |
⊢ ( 𝜑 → ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐶 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) |
6 |
2 3 4
|
3jca |
⊢ ( 𝜑 → ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( bday ‘ 𝑥 ) = ( bday ‘ 𝐴 ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) = ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦 ) ) ) |
9 |
7
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) = ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑧 ) ) ) |
10 |
8 9
|
uneq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) = ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑧 ) ) ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ↔ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) ) |
12 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 +s 𝑦 ) = ( 𝐴 +s 𝑦 ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 +s 𝑦 ) ∈ No ↔ ( 𝐴 +s 𝑦 ) ∈ No ) ) |
14 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 +s 𝑥 ) = ( 𝑦 +s 𝐴 ) ) |
15 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑧 +s 𝑥 ) = ( 𝑧 +s 𝐴 ) ) |
16 |
14 15
|
breq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ↔ ( 𝑦 +s 𝐴 ) <s ( 𝑧 +s 𝐴 ) ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ↔ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝐴 ) <s ( 𝑧 +s 𝐴 ) ) ) ) |
18 |
13 17
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ↔ ( ( 𝐴 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝐴 ) <s ( 𝑧 +s 𝐴 ) ) ) ) ) |
19 |
11 18
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) ↔ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝐴 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝐴 ) <s ( 𝑧 +s 𝐴 ) ) ) ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( bday ‘ 𝑦 ) = ( bday ‘ 𝐵 ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦 ) ) = ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ) |
22 |
21
|
uneq1d |
⊢ ( 𝑦 = 𝐵 → ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑧 ) ) ) = ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑧 ) ) ) ) |
23 |
22
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ↔ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) ) |
24 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 +s 𝑦 ) = ( 𝐴 +s 𝐵 ) ) |
25 |
24
|
eleq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 +s 𝑦 ) ∈ No ↔ ( 𝐴 +s 𝐵 ) ∈ No ) ) |
26 |
|
breq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 <s 𝑧 ↔ 𝐵 <s 𝑧 ) ) |
27 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 +s 𝐴 ) = ( 𝐵 +s 𝐴 ) ) |
28 |
27
|
breq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 +s 𝐴 ) <s ( 𝑧 +s 𝐴 ) ↔ ( 𝐵 +s 𝐴 ) <s ( 𝑧 +s 𝐴 ) ) ) |
29 |
26 28
|
imbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝐴 ) <s ( 𝑧 +s 𝐴 ) ) ↔ ( 𝐵 <s 𝑧 → ( 𝐵 +s 𝐴 ) <s ( 𝑧 +s 𝐴 ) ) ) ) |
30 |
25 29
|
anbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝐴 ) <s ( 𝑧 +s 𝐴 ) ) ) ↔ ( ( 𝐴 +s 𝐵 ) ∈ No ∧ ( 𝐵 <s 𝑧 → ( 𝐵 +s 𝐴 ) <s ( 𝑧 +s 𝐴 ) ) ) ) ) |
31 |
23 30
|
imbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝐴 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝐴 ) <s ( 𝑧 +s 𝐴 ) ) ) ) ↔ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝐴 +s 𝐵 ) ∈ No ∧ ( 𝐵 <s 𝑧 → ( 𝐵 +s 𝐴 ) <s ( 𝑧 +s 𝐴 ) ) ) ) ) ) |
32 |
|
fveq2 |
⊢ ( 𝑧 = 𝐶 → ( bday ‘ 𝑧 ) = ( bday ‘ 𝐶 ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝑧 = 𝐶 → ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑧 ) ) = ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐶 ) ) ) |
34 |
33
|
uneq2d |
⊢ ( 𝑧 = 𝐶 → ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑧 ) ) ) = ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐶 ) ) ) ) |
35 |
34
|
eleq1d |
⊢ ( 𝑧 = 𝐶 → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ↔ ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐶 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) ) ) |
36 |
|
breq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐵 <s 𝑧 ↔ 𝐵 <s 𝐶 ) ) |
37 |
|
oveq1 |
⊢ ( 𝑧 = 𝐶 → ( 𝑧 +s 𝐴 ) = ( 𝐶 +s 𝐴 ) ) |
38 |
37
|
breq2d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐵 +s 𝐴 ) <s ( 𝑧 +s 𝐴 ) ↔ ( 𝐵 +s 𝐴 ) <s ( 𝐶 +s 𝐴 ) ) ) |
39 |
36 38
|
imbi12d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐵 <s 𝑧 → ( 𝐵 +s 𝐴 ) <s ( 𝑧 +s 𝐴 ) ) ↔ ( 𝐵 <s 𝐶 → ( 𝐵 +s 𝐴 ) <s ( 𝐶 +s 𝐴 ) ) ) ) |
40 |
39
|
anbi2d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 +s 𝐵 ) ∈ No ∧ ( 𝐵 <s 𝑧 → ( 𝐵 +s 𝐴 ) <s ( 𝑧 +s 𝐴 ) ) ) ↔ ( ( 𝐴 +s 𝐵 ) ∈ No ∧ ( 𝐵 <s 𝐶 → ( 𝐵 +s 𝐴 ) <s ( 𝐶 +s 𝐴 ) ) ) ) ) |
41 |
35 40
|
imbi12d |
⊢ ( 𝑧 = 𝐶 → ( ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝐴 +s 𝐵 ) ∈ No ∧ ( 𝐵 <s 𝑧 → ( 𝐵 +s 𝐴 ) <s ( 𝑧 +s 𝐴 ) ) ) ) ↔ ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐶 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝐴 +s 𝐵 ) ∈ No ∧ ( 𝐵 <s 𝐶 → ( 𝐵 +s 𝐴 ) <s ( 𝐶 +s 𝐴 ) ) ) ) ) ) |
42 |
19 31 41
|
rspc3v |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ∀ 𝑧 ∈ No ( ( ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑦 ) ) ∪ ( ( bday ‘ 𝑥 ) +no ( bday ‘ 𝑧 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝑥 +s 𝑦 ) ∈ No ∧ ( 𝑦 <s 𝑧 → ( 𝑦 +s 𝑥 ) <s ( 𝑧 +s 𝑥 ) ) ) ) → ( ( ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐵 ) ) ∪ ( ( bday ‘ 𝐴 ) +no ( bday ‘ 𝐶 ) ) ) ∈ ( ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑌 ) ) ∪ ( ( bday ‘ 𝑋 ) +no ( bday ‘ 𝑍 ) ) ) → ( ( 𝐴 +s 𝐵 ) ∈ No ∧ ( 𝐵 <s 𝐶 → ( 𝐵 +s 𝐴 ) <s ( 𝐶 +s 𝐴 ) ) ) ) ) ) |
43 |
6 1 5 42
|
syl3c |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) ∈ No ∧ ( 𝐵 <s 𝐶 → ( 𝐵 +s 𝐴 ) <s ( 𝐶 +s 𝐴 ) ) ) ) |