| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addsproplem.1 |  |-  ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y  ( y +s x )  | 
						
							| 2 |  | addsproplem1.2 |  |-  ( ph -> A e. No ) | 
						
							| 3 |  | addsproplem1.3 |  |-  ( ph -> B e. No ) | 
						
							| 4 |  | addsproplem1.4 |  |-  ( ph -> C e. No ) | 
						
							| 5 |  | addsproplem1.5 |  |-  ( ph -> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) | 
						
							| 6 | 2 3 4 | 3jca |  |-  ( ph -> ( A e. No /\ B e. No /\ C e. No ) ) | 
						
							| 7 |  | fveq2 |  |-  ( x = A -> ( bday ` x ) = ( bday ` A ) ) | 
						
							| 8 | 7 | oveq1d |  |-  ( x = A -> ( ( bday ` x ) +no ( bday ` y ) ) = ( ( bday ` A ) +no ( bday ` y ) ) ) | 
						
							| 9 | 7 | oveq1d |  |-  ( x = A -> ( ( bday ` x ) +no ( bday ` z ) ) = ( ( bday ` A ) +no ( bday ` z ) ) ) | 
						
							| 10 | 8 9 | uneq12d |  |-  ( x = A -> ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) = ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) ) | 
						
							| 11 | 10 | eleq1d |  |-  ( x = A -> ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) ) | 
						
							| 12 |  | oveq1 |  |-  ( x = A -> ( x +s y ) = ( A +s y ) ) | 
						
							| 13 | 12 | eleq1d |  |-  ( x = A -> ( ( x +s y ) e. No <-> ( A +s y ) e. No ) ) | 
						
							| 14 |  | oveq2 |  |-  ( x = A -> ( y +s x ) = ( y +s A ) ) | 
						
							| 15 |  | oveq2 |  |-  ( x = A -> ( z +s x ) = ( z +s A ) ) | 
						
							| 16 | 14 15 | breq12d |  |-  ( x = A -> ( ( y +s x )  ( y +s A )  | 
						
							| 17 | 16 | imbi2d |  |-  ( x = A -> ( ( y  ( y +s x )  ( y  ( y +s A )  | 
						
							| 18 | 13 17 | anbi12d |  |-  ( x = A -> ( ( ( x +s y ) e. No /\ ( y  ( y +s x )  ( ( A +s y ) e. No /\ ( y  ( y +s A )  | 
						
							| 19 | 11 18 | imbi12d |  |-  ( x = A -> ( ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y  ( y +s x )  ( ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s y ) e. No /\ ( y  ( y +s A )  | 
						
							| 20 |  | fveq2 |  |-  ( y = B -> ( bday ` y ) = ( bday ` B ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( y = B -> ( ( bday ` A ) +no ( bday ` y ) ) = ( ( bday ` A ) +no ( bday ` B ) ) ) | 
						
							| 22 | 21 | uneq1d |  |-  ( y = B -> ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) = ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) ) | 
						
							| 23 | 22 | eleq1d |  |-  ( y = B -> ( ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) ) | 
						
							| 24 |  | oveq2 |  |-  ( y = B -> ( A +s y ) = ( A +s B ) ) | 
						
							| 25 | 24 | eleq1d |  |-  ( y = B -> ( ( A +s y ) e. No <-> ( A +s B ) e. No ) ) | 
						
							| 26 |  | breq1 |  |-  ( y = B -> ( y  B  | 
						
							| 27 |  | oveq1 |  |-  ( y = B -> ( y +s A ) = ( B +s A ) ) | 
						
							| 28 | 27 | breq1d |  |-  ( y = B -> ( ( y +s A )  ( B +s A )  | 
						
							| 29 | 26 28 | imbi12d |  |-  ( y = B -> ( ( y  ( y +s A )  ( B  ( B +s A )  | 
						
							| 30 | 25 29 | anbi12d |  |-  ( y = B -> ( ( ( A +s y ) e. No /\ ( y  ( y +s A )  ( ( A +s B ) e. No /\ ( B  ( B +s A )  | 
						
							| 31 | 23 30 | imbi12d |  |-  ( y = B -> ( ( ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s y ) e. No /\ ( y  ( y +s A )  ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B  ( B +s A )  | 
						
							| 32 |  | fveq2 |  |-  ( z = C -> ( bday ` z ) = ( bday ` C ) ) | 
						
							| 33 | 32 | oveq2d |  |-  ( z = C -> ( ( bday ` A ) +no ( bday ` z ) ) = ( ( bday ` A ) +no ( bday ` C ) ) ) | 
						
							| 34 | 33 | uneq2d |  |-  ( z = C -> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) = ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) ) | 
						
							| 35 | 34 | eleq1d |  |-  ( z = C -> ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) ) | 
						
							| 36 |  | breq2 |  |-  ( z = C -> ( B  B  | 
						
							| 37 |  | oveq1 |  |-  ( z = C -> ( z +s A ) = ( C +s A ) ) | 
						
							| 38 | 37 | breq2d |  |-  ( z = C -> ( ( B +s A )  ( B +s A )  | 
						
							| 39 | 36 38 | imbi12d |  |-  ( z = C -> ( ( B  ( B +s A )  ( B  ( B +s A )  | 
						
							| 40 | 39 | anbi2d |  |-  ( z = C -> ( ( ( A +s B ) e. No /\ ( B  ( B +s A )  ( ( A +s B ) e. No /\ ( B  ( B +s A )  | 
						
							| 41 | 35 40 | imbi12d |  |-  ( z = C -> ( ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B  ( B +s A )  ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B  ( B +s A )  | 
						
							| 42 | 19 31 41 | rspc3v |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y  ( y +s x )  ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B  ( B +s A )  | 
						
							| 43 | 6 1 5 42 | syl3c |  |-  ( ph -> ( ( A +s B ) e. No /\ ( B  ( B +s A )  |