| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addsproplem.1 |
|
| 2 |
|
addsproplem1.2 |
|
| 3 |
|
addsproplem1.3 |
|
| 4 |
|
addsproplem1.4 |
|
| 5 |
|
addsproplem1.5 |
|
| 6 |
2 3 4
|
3jca |
|
| 7 |
|
fveq2 |
|
| 8 |
7
|
oveq1d |
|
| 9 |
7
|
oveq1d |
|
| 10 |
8 9
|
uneq12d |
|
| 11 |
10
|
eleq1d |
|
| 12 |
|
oveq1 |
|
| 13 |
12
|
eleq1d |
|
| 14 |
|
oveq2 |
|
| 15 |
|
oveq2 |
|
| 16 |
14 15
|
breq12d |
|
| 17 |
16
|
imbi2d |
|
| 18 |
13 17
|
anbi12d |
|
| 19 |
11 18
|
imbi12d |
|
| 20 |
|
fveq2 |
|
| 21 |
20
|
oveq2d |
|
| 22 |
21
|
uneq1d |
|
| 23 |
22
|
eleq1d |
|
| 24 |
|
oveq2 |
|
| 25 |
24
|
eleq1d |
|
| 26 |
|
breq1 |
|
| 27 |
|
oveq1 |
|
| 28 |
27
|
breq1d |
|
| 29 |
26 28
|
imbi12d |
|
| 30 |
25 29
|
anbi12d |
|
| 31 |
23 30
|
imbi12d |
|
| 32 |
|
fveq2 |
|
| 33 |
32
|
oveq2d |
|
| 34 |
33
|
uneq2d |
|
| 35 |
34
|
eleq1d |
|
| 36 |
|
breq2 |
|
| 37 |
|
oveq1 |
|
| 38 |
37
|
breq2d |
|
| 39 |
36 38
|
imbi12d |
|
| 40 |
39
|
anbi2d |
|
| 41 |
35 40
|
imbi12d |
|
| 42 |
19 31 41
|
rspc3v |
|
| 43 |
6 1 5 42
|
syl3c |
|