Step |
Hyp |
Ref |
Expression |
1 |
|
addsproplem.1 |
β’ ( π β β π₯ β No β π¦ β No β π§ β No ( ( ( ( bday β π₯ ) +no ( bday β π¦ ) ) βͺ ( ( bday β π₯ ) +no ( bday β π§ ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( π₯ +s π¦ ) β No β§ ( π¦ <s π§ β ( π¦ +s π₯ ) <s ( π§ +s π₯ ) ) ) ) ) |
2 |
|
addsproplem2.2 |
β’ ( π β π β No ) |
3 |
|
addsproplem2.3 |
β’ ( π β π β No ) |
4 |
|
fvex |
β’ ( L β π ) β V |
5 |
4
|
abrexex |
β’ { π β£ β π β ( L β π ) π = ( π +s π ) } β V |
6 |
5
|
a1i |
β’ ( π β { π β£ β π β ( L β π ) π = ( π +s π ) } β V ) |
7 |
|
fvex |
β’ ( L β π ) β V |
8 |
7
|
abrexex |
β’ { π β£ β π β ( L β π ) π = ( π +s π ) } β V |
9 |
8
|
a1i |
β’ ( π β { π β£ β π β ( L β π ) π = ( π +s π ) } β V ) |
10 |
6 9
|
unexd |
β’ ( π β ( { π β£ β π β ( L β π ) π = ( π +s π ) } βͺ { π β£ β π β ( L β π ) π = ( π +s π ) } ) β V ) |
11 |
|
fvex |
β’ ( R β π ) β V |
12 |
11
|
abrexex |
β’ { π€ β£ β π β ( R β π ) π€ = ( π +s π ) } β V |
13 |
12
|
a1i |
β’ ( π β { π€ β£ β π β ( R β π ) π€ = ( π +s π ) } β V ) |
14 |
|
fvex |
β’ ( R β π ) β V |
15 |
14
|
abrexex |
β’ { π‘ β£ β π β ( R β π ) π‘ = ( π +s π ) } β V |
16 |
15
|
a1i |
β’ ( π β { π‘ β£ β π β ( R β π ) π‘ = ( π +s π ) } β V ) |
17 |
13 16
|
unexd |
β’ ( π β ( { π€ β£ β π β ( R β π ) π€ = ( π +s π ) } βͺ { π‘ β£ β π β ( R β π ) π‘ = ( π +s π ) } ) β V ) |
18 |
1
|
adantr |
β’ ( ( π β§ π β ( L β π ) ) β β π₯ β No β π¦ β No β π§ β No ( ( ( ( bday β π₯ ) +no ( bday β π¦ ) ) βͺ ( ( bday β π₯ ) +no ( bday β π§ ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( π₯ +s π¦ ) β No β§ ( π¦ <s π§ β ( π¦ +s π₯ ) <s ( π§ +s π₯ ) ) ) ) ) |
19 |
|
leftssno |
β’ ( L β π ) β No |
20 |
19
|
sseli |
β’ ( π β ( L β π ) β π β No ) |
21 |
20
|
adantl |
β’ ( ( π β§ π β ( L β π ) ) β π β No ) |
22 |
3
|
adantr |
β’ ( ( π β§ π β ( L β π ) ) β π β No ) |
23 |
|
0sno |
β’ 0s β No |
24 |
23
|
a1i |
β’ ( ( π β§ π β ( L β π ) ) β 0s β No ) |
25 |
|
bday0s |
β’ ( bday β 0s ) = β
|
26 |
25
|
oveq2i |
β’ ( ( bday β π ) +no ( bday β 0s ) ) = ( ( bday β π ) +no β
) |
27 |
|
bdayelon |
β’ ( bday β π ) β On |
28 |
|
naddrid |
β’ ( ( bday β π ) β On β ( ( bday β π ) +no β
) = ( bday β π ) ) |
29 |
27 28
|
ax-mp |
β’ ( ( bday β π ) +no β
) = ( bday β π ) |
30 |
26 29
|
eqtri |
β’ ( ( bday β π ) +no ( bday β 0s ) ) = ( bday β π ) |
31 |
30
|
uneq2i |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) = ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) |
32 |
|
bdayelon |
β’ ( bday β π ) β On |
33 |
|
naddword1 |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) ) |
34 |
27 32 33
|
mp2an |
β’ ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) |
35 |
|
ssequn2 |
β’ ( ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) ) |
36 |
34 35
|
mpbi |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) |
37 |
31 36
|
eqtri |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) = ( ( bday β π ) +no ( bday β π ) ) |
38 |
|
leftssold |
β’ ( L β π ) β ( O β ( bday β π ) ) |
39 |
38
|
sseli |
β’ ( π β ( L β π ) β π β ( O β ( bday β π ) ) ) |
40 |
|
bdayelon |
β’ ( bday β π ) β On |
41 |
|
oldbday |
β’ ( ( ( bday β π ) β On β§ π β No ) β ( π β ( O β ( bday β π ) ) β ( bday β π ) β ( bday β π ) ) ) |
42 |
40 20 41
|
sylancr |
β’ ( π β ( L β π ) β ( π β ( O β ( bday β π ) ) β ( bday β π ) β ( bday β π ) ) ) |
43 |
39 42
|
mpbid |
β’ ( π β ( L β π ) β ( bday β π ) β ( bday β π ) ) |
44 |
|
naddel1 |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) |
45 |
27 40 32 44
|
mp3an |
β’ ( ( bday β π ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
46 |
43 45
|
sylib |
β’ ( π β ( L β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
47 |
46
|
adantl |
β’ ( ( π β§ π β ( L β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
48 |
|
elun1 |
β’ ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
49 |
47 48
|
syl |
β’ ( ( π β§ π β ( L β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
50 |
37 49
|
eqeltrid |
β’ ( ( π β§ π β ( L β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
51 |
18 21 22 24 50
|
addsproplem1 |
β’ ( ( π β§ π β ( L β π ) ) β ( ( π +s π ) β No β§ ( π <s 0s β ( π +s π ) <s ( 0s +s π ) ) ) ) |
52 |
51
|
simpld |
β’ ( ( π β§ π β ( L β π ) ) β ( π +s π ) β No ) |
53 |
|
eleq1a |
β’ ( ( π +s π ) β No β ( π = ( π +s π ) β π β No ) ) |
54 |
52 53
|
syl |
β’ ( ( π β§ π β ( L β π ) ) β ( π = ( π +s π ) β π β No ) ) |
55 |
54
|
rexlimdva |
β’ ( π β ( β π β ( L β π ) π = ( π +s π ) β π β No ) ) |
56 |
55
|
abssdv |
β’ ( π β { π β£ β π β ( L β π ) π = ( π +s π ) } β No ) |
57 |
1
|
adantr |
β’ ( ( π β§ π β ( L β π ) ) β β π₯ β No β π¦ β No β π§ β No ( ( ( ( bday β π₯ ) +no ( bday β π¦ ) ) βͺ ( ( bday β π₯ ) +no ( bday β π§ ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( π₯ +s π¦ ) β No β§ ( π¦ <s π§ β ( π¦ +s π₯ ) <s ( π§ +s π₯ ) ) ) ) ) |
58 |
2
|
adantr |
β’ ( ( π β§ π β ( L β π ) ) β π β No ) |
59 |
|
leftssno |
β’ ( L β π ) β No |
60 |
59
|
sseli |
β’ ( π β ( L β π ) β π β No ) |
61 |
60
|
adantl |
β’ ( ( π β§ π β ( L β π ) ) β π β No ) |
62 |
23
|
a1i |
β’ ( ( π β§ π β ( L β π ) ) β 0s β No ) |
63 |
25
|
oveq2i |
β’ ( ( bday β π ) +no ( bday β 0s ) ) = ( ( bday β π ) +no β
) |
64 |
|
naddrid |
β’ ( ( bday β π ) β On β ( ( bday β π ) +no β
) = ( bday β π ) ) |
65 |
40 64
|
ax-mp |
β’ ( ( bday β π ) +no β
) = ( bday β π ) |
66 |
63 65
|
eqtri |
β’ ( ( bday β π ) +no ( bday β 0s ) ) = ( bday β π ) |
67 |
66
|
uneq2i |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) = ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) |
68 |
|
bdayelon |
β’ ( bday β π ) β On |
69 |
|
naddword1 |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) ) |
70 |
40 68 69
|
mp2an |
β’ ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) |
71 |
|
ssequn2 |
β’ ( ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) ) |
72 |
70 71
|
mpbi |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) |
73 |
67 72
|
eqtri |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) = ( ( bday β π ) +no ( bday β π ) ) |
74 |
|
leftssold |
β’ ( L β π ) β ( O β ( bday β π ) ) |
75 |
74
|
sseli |
β’ ( π β ( L β π ) β π β ( O β ( bday β π ) ) ) |
76 |
|
oldbday |
β’ ( ( ( bday β π ) β On β§ π β No ) β ( π β ( O β ( bday β π ) ) β ( bday β π ) β ( bday β π ) ) ) |
77 |
32 60 76
|
sylancr |
β’ ( π β ( L β π ) β ( π β ( O β ( bday β π ) ) β ( bday β π ) β ( bday β π ) ) ) |
78 |
75 77
|
mpbid |
β’ ( π β ( L β π ) β ( bday β π ) β ( bday β π ) ) |
79 |
|
naddel2 |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) |
80 |
68 32 40 79
|
mp3an |
β’ ( ( bday β π ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
81 |
78 80
|
sylib |
β’ ( π β ( L β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
82 |
81
|
adantl |
β’ ( ( π β§ π β ( L β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
83 |
|
elun1 |
β’ ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
84 |
82 83
|
syl |
β’ ( ( π β§ π β ( L β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
85 |
73 84
|
eqeltrid |
β’ ( ( π β§ π β ( L β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
86 |
57 58 61 62 85
|
addsproplem1 |
β’ ( ( π β§ π β ( L β π ) ) β ( ( π +s π ) β No β§ ( π <s 0s β ( π +s π ) <s ( 0s +s π ) ) ) ) |
87 |
86
|
simpld |
β’ ( ( π β§ π β ( L β π ) ) β ( π +s π ) β No ) |
88 |
|
eleq1a |
β’ ( ( π +s π ) β No β ( π = ( π +s π ) β π β No ) ) |
89 |
87 88
|
syl |
β’ ( ( π β§ π β ( L β π ) ) β ( π = ( π +s π ) β π β No ) ) |
90 |
89
|
rexlimdva |
β’ ( π β ( β π β ( L β π ) π = ( π +s π ) β π β No ) ) |
91 |
90
|
abssdv |
β’ ( π β { π β£ β π β ( L β π ) π = ( π +s π ) } β No ) |
92 |
56 91
|
unssd |
β’ ( π β ( { π β£ β π β ( L β π ) π = ( π +s π ) } βͺ { π β£ β π β ( L β π ) π = ( π +s π ) } ) β No ) |
93 |
1
|
adantr |
β’ ( ( π β§ π β ( R β π ) ) β β π₯ β No β π¦ β No β π§ β No ( ( ( ( bday β π₯ ) +no ( bday β π¦ ) ) βͺ ( ( bday β π₯ ) +no ( bday β π§ ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( π₯ +s π¦ ) β No β§ ( π¦ <s π§ β ( π¦ +s π₯ ) <s ( π§ +s π₯ ) ) ) ) ) |
94 |
|
rightssno |
β’ ( R β π ) β No |
95 |
94
|
sseli |
β’ ( π β ( R β π ) β π β No ) |
96 |
95
|
adantl |
β’ ( ( π β§ π β ( R β π ) ) β π β No ) |
97 |
3
|
adantr |
β’ ( ( π β§ π β ( R β π ) ) β π β No ) |
98 |
23
|
a1i |
β’ ( ( π β§ π β ( R β π ) ) β 0s β No ) |
99 |
25
|
oveq2i |
β’ ( ( bday β π ) +no ( bday β 0s ) ) = ( ( bday β π ) +no β
) |
100 |
|
bdayelon |
β’ ( bday β π ) β On |
101 |
|
naddrid |
β’ ( ( bday β π ) β On β ( ( bday β π ) +no β
) = ( bday β π ) ) |
102 |
100 101
|
ax-mp |
β’ ( ( bday β π ) +no β
) = ( bday β π ) |
103 |
99 102
|
eqtri |
β’ ( ( bday β π ) +no ( bday β 0s ) ) = ( bday β π ) |
104 |
103
|
uneq2i |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) = ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) |
105 |
|
naddword1 |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) ) |
106 |
100 32 105
|
mp2an |
β’ ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) |
107 |
|
ssequn2 |
β’ ( ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) ) |
108 |
106 107
|
mpbi |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) |
109 |
104 108
|
eqtri |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) = ( ( bday β π ) +no ( bday β π ) ) |
110 |
|
rightssold |
β’ ( R β π ) β ( O β ( bday β π ) ) |
111 |
110
|
sseli |
β’ ( π β ( R β π ) β π β ( O β ( bday β π ) ) ) |
112 |
|
oldbday |
β’ ( ( ( bday β π ) β On β§ π β No ) β ( π β ( O β ( bday β π ) ) β ( bday β π ) β ( bday β π ) ) ) |
113 |
40 95 112
|
sylancr |
β’ ( π β ( R β π ) β ( π β ( O β ( bday β π ) ) β ( bday β π ) β ( bday β π ) ) ) |
114 |
111 113
|
mpbid |
β’ ( π β ( R β π ) β ( bday β π ) β ( bday β π ) ) |
115 |
|
naddel1 |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) |
116 |
100 40 32 115
|
mp3an |
β’ ( ( bday β π ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
117 |
114 116
|
sylib |
β’ ( π β ( R β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
118 |
117
|
adantl |
β’ ( ( π β§ π β ( R β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
119 |
|
elun1 |
β’ ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
120 |
118 119
|
syl |
β’ ( ( π β§ π β ( R β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
121 |
109 120
|
eqeltrid |
β’ ( ( π β§ π β ( R β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
122 |
93 96 97 98 121
|
addsproplem1 |
β’ ( ( π β§ π β ( R β π ) ) β ( ( π +s π ) β No β§ ( π <s 0s β ( π +s π ) <s ( 0s +s π ) ) ) ) |
123 |
122
|
simpld |
β’ ( ( π β§ π β ( R β π ) ) β ( π +s π ) β No ) |
124 |
|
eleq1a |
β’ ( ( π +s π ) β No β ( π€ = ( π +s π ) β π€ β No ) ) |
125 |
123 124
|
syl |
β’ ( ( π β§ π β ( R β π ) ) β ( π€ = ( π +s π ) β π€ β No ) ) |
126 |
125
|
rexlimdva |
β’ ( π β ( β π β ( R β π ) π€ = ( π +s π ) β π€ β No ) ) |
127 |
126
|
abssdv |
β’ ( π β { π€ β£ β π β ( R β π ) π€ = ( π +s π ) } β No ) |
128 |
1
|
adantr |
β’ ( ( π β§ π β ( R β π ) ) β β π₯ β No β π¦ β No β π§ β No ( ( ( ( bday β π₯ ) +no ( bday β π¦ ) ) βͺ ( ( bday β π₯ ) +no ( bday β π§ ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( π₯ +s π¦ ) β No β§ ( π¦ <s π§ β ( π¦ +s π₯ ) <s ( π§ +s π₯ ) ) ) ) ) |
129 |
2
|
adantr |
β’ ( ( π β§ π β ( R β π ) ) β π β No ) |
130 |
|
rightssno |
β’ ( R β π ) β No |
131 |
130
|
sseli |
β’ ( π β ( R β π ) β π β No ) |
132 |
131
|
adantl |
β’ ( ( π β§ π β ( R β π ) ) β π β No ) |
133 |
23
|
a1i |
β’ ( ( π β§ π β ( R β π ) ) β 0s β No ) |
134 |
66
|
uneq2i |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) = ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) |
135 |
|
bdayelon |
β’ ( bday β π ) β On |
136 |
|
naddword1 |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) ) |
137 |
40 135 136
|
mp2an |
β’ ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) |
138 |
|
ssequn2 |
β’ ( ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) ) |
139 |
137 138
|
mpbi |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) |
140 |
134 139
|
eqtri |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) = ( ( bday β π ) +no ( bday β π ) ) |
141 |
|
rightssold |
β’ ( R β π ) β ( O β ( bday β π ) ) |
142 |
141
|
sseli |
β’ ( π β ( R β π ) β π β ( O β ( bday β π ) ) ) |
143 |
|
oldbday |
β’ ( ( ( bday β π ) β On β§ π β No ) β ( π β ( O β ( bday β π ) ) β ( bday β π ) β ( bday β π ) ) ) |
144 |
32 131 143
|
sylancr |
β’ ( π β ( R β π ) β ( π β ( O β ( bday β π ) ) β ( bday β π ) β ( bday β π ) ) ) |
145 |
142 144
|
mpbid |
β’ ( π β ( R β π ) β ( bday β π ) β ( bday β π ) ) |
146 |
|
naddel2 |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) |
147 |
135 32 40 146
|
mp3an |
β’ ( ( bday β π ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
148 |
145 147
|
sylib |
β’ ( π β ( R β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
149 |
148
|
adantl |
β’ ( ( π β§ π β ( R β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
150 |
|
elun1 |
β’ ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
151 |
149 150
|
syl |
β’ ( ( π β§ π β ( R β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
152 |
140 151
|
eqeltrid |
β’ ( ( π β§ π β ( R β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
153 |
128 129 132 133 152
|
addsproplem1 |
β’ ( ( π β§ π β ( R β π ) ) β ( ( π +s π ) β No β§ ( π <s 0s β ( π +s π ) <s ( 0s +s π ) ) ) ) |
154 |
153
|
simpld |
β’ ( ( π β§ π β ( R β π ) ) β ( π +s π ) β No ) |
155 |
|
eleq1a |
β’ ( ( π +s π ) β No β ( π‘ = ( π +s π ) β π‘ β No ) ) |
156 |
154 155
|
syl |
β’ ( ( π β§ π β ( R β π ) ) β ( π‘ = ( π +s π ) β π‘ β No ) ) |
157 |
156
|
rexlimdva |
β’ ( π β ( β π β ( R β π ) π‘ = ( π +s π ) β π‘ β No ) ) |
158 |
157
|
abssdv |
β’ ( π β { π‘ β£ β π β ( R β π ) π‘ = ( π +s π ) } β No ) |
159 |
127 158
|
unssd |
β’ ( π β ( { π€ β£ β π β ( R β π ) π€ = ( π +s π ) } βͺ { π‘ β£ β π β ( R β π ) π‘ = ( π +s π ) } ) β No ) |
160 |
|
elun |
β’ ( π β ( { π β£ β π β ( L β π ) π = ( π +s π ) } βͺ { π β£ β π β ( L β π ) π = ( π +s π ) } ) β ( π β { π β£ β π β ( L β π ) π = ( π +s π ) } β¨ π β { π β£ β π β ( L β π ) π = ( π +s π ) } ) ) |
161 |
|
vex |
β’ π β V |
162 |
|
eqeq1 |
β’ ( π = π β ( π = ( π +s π ) β π = ( π +s π ) ) ) |
163 |
162
|
rexbidv |
β’ ( π = π β ( β π β ( L β π ) π = ( π +s π ) β β π β ( L β π ) π = ( π +s π ) ) ) |
164 |
161 163
|
elab |
β’ ( π β { π β£ β π β ( L β π ) π = ( π +s π ) } β β π β ( L β π ) π = ( π +s π ) ) |
165 |
|
eqeq1 |
β’ ( π = π β ( π = ( π +s π ) β π = ( π +s π ) ) ) |
166 |
165
|
rexbidv |
β’ ( π = π β ( β π β ( L β π ) π = ( π +s π ) β β π β ( L β π ) π = ( π +s π ) ) ) |
167 |
161 166
|
elab |
β’ ( π β { π β£ β π β ( L β π ) π = ( π +s π ) } β β π β ( L β π ) π = ( π +s π ) ) |
168 |
164 167
|
orbi12i |
β’ ( ( π β { π β£ β π β ( L β π ) π = ( π +s π ) } β¨ π β { π β£ β π β ( L β π ) π = ( π +s π ) } ) β ( β π β ( L β π ) π = ( π +s π ) β¨ β π β ( L β π ) π = ( π +s π ) ) ) |
169 |
160 168
|
bitri |
β’ ( π β ( { π β£ β π β ( L β π ) π = ( π +s π ) } βͺ { π β£ β π β ( L β π ) π = ( π +s π ) } ) β ( β π β ( L β π ) π = ( π +s π ) β¨ β π β ( L β π ) π = ( π +s π ) ) ) |
170 |
|
elun |
β’ ( π β ( { π€ β£ β π β ( R β π ) π€ = ( π +s π ) } βͺ { π‘ β£ β π β ( R β π ) π‘ = ( π +s π ) } ) β ( π β { π€ β£ β π β ( R β π ) π€ = ( π +s π ) } β¨ π β { π‘ β£ β π β ( R β π ) π‘ = ( π +s π ) } ) ) |
171 |
|
vex |
β’ π β V |
172 |
|
eqeq1 |
β’ ( π€ = π β ( π€ = ( π +s π ) β π = ( π +s π ) ) ) |
173 |
172
|
rexbidv |
β’ ( π€ = π β ( β π β ( R β π ) π€ = ( π +s π ) β β π β ( R β π ) π = ( π +s π ) ) ) |
174 |
171 173
|
elab |
β’ ( π β { π€ β£ β π β ( R β π ) π€ = ( π +s π ) } β β π β ( R β π ) π = ( π +s π ) ) |
175 |
|
eqeq1 |
β’ ( π‘ = π β ( π‘ = ( π +s π ) β π = ( π +s π ) ) ) |
176 |
175
|
rexbidv |
β’ ( π‘ = π β ( β π β ( R β π ) π‘ = ( π +s π ) β β π β ( R β π ) π = ( π +s π ) ) ) |
177 |
171 176
|
elab |
β’ ( π β { π‘ β£ β π β ( R β π ) π‘ = ( π +s π ) } β β π β ( R β π ) π = ( π +s π ) ) |
178 |
174 177
|
orbi12i |
β’ ( ( π β { π€ β£ β π β ( R β π ) π€ = ( π +s π ) } β¨ π β { π‘ β£ β π β ( R β π ) π‘ = ( π +s π ) } ) β ( β π β ( R β π ) π = ( π +s π ) β¨ β π β ( R β π ) π = ( π +s π ) ) ) |
179 |
170 178
|
bitri |
β’ ( π β ( { π€ β£ β π β ( R β π ) π€ = ( π +s π ) } βͺ { π‘ β£ β π β ( R β π ) π‘ = ( π +s π ) } ) β ( β π β ( R β π ) π = ( π +s π ) β¨ β π β ( R β π ) π = ( π +s π ) ) ) |
180 |
169 179
|
anbi12i |
β’ ( ( π β ( { π β£ β π β ( L β π ) π = ( π +s π ) } βͺ { π β£ β π β ( L β π ) π = ( π +s π ) } ) β§ π β ( { π€ β£ β π β ( R β π ) π€ = ( π +s π ) } βͺ { π‘ β£ β π β ( R β π ) π‘ = ( π +s π ) } ) ) β ( ( β π β ( L β π ) π = ( π +s π ) β¨ β π β ( L β π ) π = ( π +s π ) ) β§ ( β π β ( R β π ) π = ( π +s π ) β¨ β π β ( R β π ) π = ( π +s π ) ) ) ) |
181 |
|
anddi |
β’ ( ( ( β π β ( L β π ) π = ( π +s π ) β¨ β π β ( L β π ) π = ( π +s π ) ) β§ ( β π β ( R β π ) π = ( π +s π ) β¨ β π β ( R β π ) π = ( π +s π ) ) ) β ( ( ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) β¨ ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) ) β¨ ( ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) β¨ ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) ) ) ) |
182 |
180 181
|
bitri |
β’ ( ( π β ( { π β£ β π β ( L β π ) π = ( π +s π ) } βͺ { π β£ β π β ( L β π ) π = ( π +s π ) } ) β§ π β ( { π€ β£ β π β ( R β π ) π€ = ( π +s π ) } βͺ { π‘ β£ β π β ( R β π ) π‘ = ( π +s π ) } ) ) β ( ( ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) β¨ ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) ) β¨ ( ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) β¨ ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) ) ) ) |
183 |
|
reeanv |
β’ ( β π β ( L β π ) β π β ( R β π ) ( π = ( π +s π ) β§ π = ( π +s π ) ) β ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) ) |
184 |
|
lltropt |
β’ ( L β π ) <<s ( R β π ) |
185 |
184
|
a1i |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( L β π ) <<s ( R β π ) ) |
186 |
|
simprl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β ( L β π ) ) |
187 |
|
simprr |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β ( R β π ) ) |
188 |
185 186 187
|
ssltsepcd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π <s π ) |
189 |
1
|
adantr |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β β π₯ β No β π¦ β No β π§ β No ( ( ( ( bday β π₯ ) +no ( bday β π¦ ) ) βͺ ( ( bday β π₯ ) +no ( bday β π§ ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( π₯ +s π¦ ) β No β§ ( π¦ <s π§ β ( π¦ +s π₯ ) <s ( π§ +s π₯ ) ) ) ) ) |
190 |
3
|
adantr |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β No ) |
191 |
20
|
ad2antrl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β No ) |
192 |
95
|
ad2antll |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β No ) |
193 |
|
naddcom |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) ) |
194 |
32 27 193
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) |
195 |
46
|
ad2antrl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
196 |
194 195
|
eqeltrid |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
197 |
|
naddcom |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) ) |
198 |
32 100 197
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) |
199 |
117
|
ad2antll |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
200 |
198 199
|
eqeltrid |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
201 |
|
naddcl |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) β On ) |
202 |
32 27 201
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) β On |
203 |
|
naddcl |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) β On ) |
204 |
32 100 203
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) β On |
205 |
|
naddcl |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) β On ) |
206 |
40 32 205
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) β On |
207 |
|
onunel |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) β On β§ ( ( bday β π ) +no ( bday β π ) ) β On β§ ( ( bday β π ) +no ( bday β π ) ) β On ) β ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β§ ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) ) |
208 |
202 204 206 207
|
mp3an |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β§ ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) |
209 |
196 200 208
|
sylanbrc |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
210 |
|
elun1 |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
211 |
209 210
|
syl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
212 |
189 190 191 192 211
|
addsproplem1 |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( π +s π ) β No β§ ( π <s π β ( π +s π ) <s ( π +s π ) ) ) ) |
213 |
212
|
simprd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π <s π β ( π +s π ) <s ( π +s π ) ) ) |
214 |
188 213
|
mpd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) <s ( π +s π ) ) |
215 |
|
breq12 |
β’ ( ( π = ( π +s π ) β§ π = ( π +s π ) ) β ( π <s π β ( π +s π ) <s ( π +s π ) ) ) |
216 |
214 215
|
syl5ibrcom |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( π = ( π +s π ) β§ π = ( π +s π ) ) β π <s π ) ) |
217 |
216
|
rexlimdvva |
β’ ( π β ( β π β ( L β π ) β π β ( R β π ) ( π = ( π +s π ) β§ π = ( π +s π ) ) β π <s π ) ) |
218 |
183 217
|
biimtrrid |
β’ ( π β ( ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) β π <s π ) ) |
219 |
|
reeanv |
β’ ( β π β ( L β π ) β π β ( R β π ) ( π = ( π +s π ) β§ π = ( π +s π ) ) β ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) ) |
220 |
52
|
adantrr |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) β No ) |
221 |
1
|
adantr |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β β π₯ β No β π¦ β No β π§ β No ( ( ( ( bday β π₯ ) +no ( bday β π¦ ) ) βͺ ( ( bday β π₯ ) +no ( bday β π§ ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( π₯ +s π¦ ) β No β§ ( π¦ <s π§ β ( π¦ +s π₯ ) <s ( π§ +s π₯ ) ) ) ) ) |
222 |
20
|
ad2antrl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β No ) |
223 |
131
|
ad2antll |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β No ) |
224 |
23
|
a1i |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β 0s β No ) |
225 |
30
|
uneq2i |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) = ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) |
226 |
|
naddword1 |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) ) |
227 |
27 135 226
|
mp2an |
β’ ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) |
228 |
|
ssequn2 |
β’ ( ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) ) |
229 |
227 228
|
mpbi |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) |
230 |
225 229
|
eqtri |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) = ( ( bday β π ) +no ( bday β π ) ) |
231 |
|
naddel1 |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) |
232 |
27 40 135 231
|
mp3an |
β’ ( ( bday β π ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
233 |
43 232
|
sylib |
β’ ( π β ( L β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
234 |
233
|
ad2antrl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
235 |
148
|
ad2antll |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
236 |
|
ontr1 |
β’ ( ( ( bday β π ) +no ( bday β π ) ) β On β ( ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β§ ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) |
237 |
206 236
|
ax-mp |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β§ ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
238 |
234 235 237
|
syl2anc |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
239 |
|
elun1 |
β’ ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
240 |
238 239
|
syl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
241 |
230 240
|
eqeltrid |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
242 |
221 222 223 224 241
|
addsproplem1 |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( π +s π ) β No β§ ( π <s 0s β ( π +s π ) <s ( 0s +s π ) ) ) ) |
243 |
242
|
simpld |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) β No ) |
244 |
154
|
adantrl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) β No ) |
245 |
|
rightval |
β’ ( R β π ) = { π β ( O β ( bday β π ) ) β£ π <s π } |
246 |
245
|
reqabi |
β’ ( π β ( R β π ) β ( π β ( O β ( bday β π ) ) β§ π <s π ) ) |
247 |
246
|
simprbi |
β’ ( π β ( R β π ) β π <s π ) |
248 |
247
|
ad2antll |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π <s π ) |
249 |
3
|
adantr |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β No ) |
250 |
46
|
ad2antrl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
251 |
|
naddcl |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) β On ) |
252 |
27 32 251
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) β On |
253 |
|
naddcl |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) β On ) |
254 |
27 135 253
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) β On |
255 |
|
onunel |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) β On β§ ( ( bday β π ) +no ( bday β π ) ) β On β§ ( ( bday β π ) +no ( bday β π ) ) β On ) β ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β§ ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) ) |
256 |
252 254 206 255
|
mp3an |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β§ ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) |
257 |
250 238 256
|
sylanbrc |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
258 |
|
elun1 |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
259 |
257 258
|
syl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
260 |
221 222 249 223 259
|
addsproplem1 |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( π +s π ) β No β§ ( π <s π β ( π +s π ) <s ( π +s π ) ) ) ) |
261 |
260
|
simprd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π <s π β ( π +s π ) <s ( π +s π ) ) ) |
262 |
248 261
|
mpd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) <s ( π +s π ) ) |
263 |
222 249
|
addscomd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) = ( π +s π ) ) |
264 |
222 223
|
addscomd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) = ( π +s π ) ) |
265 |
262 263 264
|
3brtr4d |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) <s ( π +s π ) ) |
266 |
|
leftval |
β’ ( L β π ) = { π β ( O β ( bday β π ) ) β£ π <s π } |
267 |
266
|
reqabi |
β’ ( π β ( L β π ) β ( π β ( O β ( bday β π ) ) β§ π <s π ) ) |
268 |
267
|
simprbi |
β’ ( π β ( L β π ) β π <s π ) |
269 |
268
|
ad2antrl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π <s π ) |
270 |
2
|
adantr |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β No ) |
271 |
|
naddcom |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) ) |
272 |
135 27 271
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) |
273 |
272 238
|
eqeltrid |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
274 |
|
naddcom |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) ) |
275 |
135 40 274
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) |
276 |
275 235
|
eqeltrid |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
277 |
|
naddcl |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) β On ) |
278 |
135 27 277
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) β On |
279 |
|
naddcl |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) β On ) |
280 |
135 40 279
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) β On |
281 |
|
onunel |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) β On β§ ( ( bday β π ) +no ( bday β π ) ) β On β§ ( ( bday β π ) +no ( bday β π ) ) β On ) β ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β§ ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) ) |
282 |
278 280 206 281
|
mp3an |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β§ ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) |
283 |
273 276 282
|
sylanbrc |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
284 |
|
elun1 |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
285 |
283 284
|
syl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
286 |
221 223 222 270 285
|
addsproplem1 |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( π +s π ) β No β§ ( π <s π β ( π +s π ) <s ( π +s π ) ) ) ) |
287 |
286
|
simprd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π <s π β ( π +s π ) <s ( π +s π ) ) ) |
288 |
269 287
|
mpd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) <s ( π +s π ) ) |
289 |
220 243 244 265 288
|
slttrd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) <s ( π +s π ) ) |
290 |
|
breq12 |
β’ ( ( π = ( π +s π ) β§ π = ( π +s π ) ) β ( π <s π β ( π +s π ) <s ( π +s π ) ) ) |
291 |
289 290
|
syl5ibrcom |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( π = ( π +s π ) β§ π = ( π +s π ) ) β π <s π ) ) |
292 |
291
|
rexlimdvva |
β’ ( π β ( β π β ( L β π ) β π β ( R β π ) ( π = ( π +s π ) β§ π = ( π +s π ) ) β π <s π ) ) |
293 |
219 292
|
biimtrrid |
β’ ( π β ( ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) β π <s π ) ) |
294 |
218 293
|
jaod |
β’ ( π β ( ( ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) β¨ ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) ) β π <s π ) ) |
295 |
|
reeanv |
β’ ( β π β ( L β π ) β π β ( R β π ) ( π = ( π +s π ) β§ π = ( π +s π ) ) β ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) ) |
296 |
1
|
adantr |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β β π₯ β No β π¦ β No β π§ β No ( ( ( ( bday β π₯ ) +no ( bday β π¦ ) ) βͺ ( ( bday β π₯ ) +no ( bday β π§ ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( π₯ +s π¦ ) β No β§ ( π¦ <s π§ β ( π¦ +s π₯ ) <s ( π§ +s π₯ ) ) ) ) ) |
297 |
2
|
adantr |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β No ) |
298 |
60
|
ad2antrl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β No ) |
299 |
23
|
a1i |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β 0s β No ) |
300 |
81
|
ad2antrl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
301 |
300 83
|
syl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
302 |
73 301
|
eqeltrid |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
303 |
296 297 298 299 302
|
addsproplem1 |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( π +s π ) β No β§ ( π <s 0s β ( π +s π ) <s ( 0s +s π ) ) ) ) |
304 |
303
|
simpld |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) β No ) |
305 |
95
|
ad2antll |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β No ) |
306 |
103
|
uneq2i |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) = ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) |
307 |
|
naddword1 |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) ) |
308 |
100 68 307
|
mp2an |
β’ ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) |
309 |
|
ssequn2 |
β’ ( ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) ) |
310 |
308 309
|
mpbi |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) |
311 |
306 310
|
eqtri |
β’ ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) = ( ( bday β π ) +no ( bday β π ) ) |
312 |
|
naddel1 |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) |
313 |
100 40 68 312
|
mp3an |
β’ ( ( bday β π ) β ( bday β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
314 |
114 313
|
sylib |
β’ ( π β ( R β π ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
315 |
314
|
ad2antll |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
316 |
|
ontr1 |
β’ ( ( ( bday β π ) +no ( bday β π ) ) β On β ( ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β§ ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) |
317 |
206 316
|
ax-mp |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β§ ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
318 |
315 300 317
|
syl2anc |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
319 |
|
elun1 |
β’ ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
320 |
318 319
|
syl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
321 |
311 320
|
eqeltrid |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
322 |
296 305 298 299 321
|
addsproplem1 |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( π +s π ) β No β§ ( π <s 0s β ( π +s π ) <s ( 0s +s π ) ) ) ) |
323 |
322
|
simpld |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) β No ) |
324 |
3
|
adantr |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β No ) |
325 |
117
|
ad2antll |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
326 |
325 119
|
syl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
327 |
109 326
|
eqeltrid |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β 0s ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
328 |
296 305 324 299 327
|
addsproplem1 |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( π +s π ) β No β§ ( π <s 0s β ( π +s π ) <s ( 0s +s π ) ) ) ) |
329 |
328
|
simpld |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) β No ) |
330 |
|
rightval |
β’ ( R β π ) = { π β ( O β ( bday β π ) ) β£ π <s π } |
331 |
330
|
eleq2i |
β’ ( π β ( R β π ) β π β { π β ( O β ( bday β π ) ) β£ π <s π } ) |
332 |
331
|
biimpi |
β’ ( π β ( R β π ) β π β { π β ( O β ( bday β π ) ) β£ π <s π } ) |
333 |
332
|
ad2antll |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β { π β ( O β ( bday β π ) ) β£ π <s π } ) |
334 |
|
rabid |
β’ ( π β { π β ( O β ( bday β π ) ) β£ π <s π } β ( π β ( O β ( bday β π ) ) β§ π <s π ) ) |
335 |
333 334
|
sylib |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π β ( O β ( bday β π ) ) β§ π <s π ) ) |
336 |
335
|
simprd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π <s π ) |
337 |
|
naddcom |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) ) |
338 |
68 40 337
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) |
339 |
338 300
|
eqeltrid |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
340 |
|
naddcom |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) ) |
341 |
68 100 340
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) = ( ( bday β π ) +no ( bday β π ) ) |
342 |
341 318
|
eqeltrid |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
343 |
|
naddcl |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) β On ) |
344 |
68 40 343
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) β On |
345 |
|
naddcl |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) β On ) |
346 |
68 100 345
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) β On |
347 |
|
onunel |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) β On β§ ( ( bday β π ) +no ( bday β π ) ) β On β§ ( ( bday β π ) +no ( bday β π ) ) β On ) β ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β§ ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) ) |
348 |
344 346 206 347
|
mp3an |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β§ ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) |
349 |
339 342 348
|
sylanbrc |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
350 |
|
elun1 |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
351 |
349 350
|
syl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
352 |
296 298 297 305 351
|
addsproplem1 |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( π +s π ) β No β§ ( π <s π β ( π +s π ) <s ( π +s π ) ) ) ) |
353 |
352
|
simprd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π <s π β ( π +s π ) <s ( π +s π ) ) ) |
354 |
336 353
|
mpd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) <s ( π +s π ) ) |
355 |
|
leftval |
β’ ( L β π ) = { π β ( O β ( bday β π ) ) β£ π <s π } |
356 |
355
|
eleq2i |
β’ ( π β ( L β π ) β π β { π β ( O β ( bday β π ) ) β£ π <s π } ) |
357 |
356
|
biimpi |
β’ ( π β ( L β π ) β π β { π β ( O β ( bday β π ) ) β£ π <s π } ) |
358 |
357
|
ad2antrl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β { π β ( O β ( bday β π ) ) β£ π <s π } ) |
359 |
|
rabid |
β’ ( π β { π β ( O β ( bday β π ) ) β£ π <s π } β ( π β ( O β ( bday β π ) ) β§ π <s π ) ) |
360 |
358 359
|
sylib |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π β ( O β ( bday β π ) ) β§ π <s π ) ) |
361 |
360
|
simprd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π <s π ) |
362 |
|
naddcl |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) β On ) |
363 |
100 68 362
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) β On |
364 |
|
naddcl |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) β On ) |
365 |
100 32 364
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) β On |
366 |
|
onunel |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) β On β§ ( ( bday β π ) +no ( bday β π ) ) β On β§ ( ( bday β π ) +no ( bday β π ) ) β On ) β ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β§ ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) ) |
367 |
363 365 206 366
|
mp3an |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β§ ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) |
368 |
318 325 367
|
sylanbrc |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
369 |
|
elun1 |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
370 |
368 369
|
syl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
371 |
296 305 298 324 370
|
addsproplem1 |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( π +s π ) β No β§ ( π <s π β ( π +s π ) <s ( π +s π ) ) ) ) |
372 |
371
|
simprd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π <s π β ( π +s π ) <s ( π +s π ) ) ) |
373 |
361 372
|
mpd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) <s ( π +s π ) ) |
374 |
305 298
|
addscomd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) = ( π +s π ) ) |
375 |
305 324
|
addscomd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) = ( π +s π ) ) |
376 |
373 374 375
|
3brtr4d |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) <s ( π +s π ) ) |
377 |
304 323 329 354 376
|
slttrd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) <s ( π +s π ) ) |
378 |
|
breq12 |
β’ ( ( π = ( π +s π ) β§ π = ( π +s π ) ) β ( π <s π β ( π +s π ) <s ( π +s π ) ) ) |
379 |
377 378
|
syl5ibrcom |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( π = ( π +s π ) β§ π = ( π +s π ) ) β π <s π ) ) |
380 |
379
|
rexlimdvva |
β’ ( π β ( β π β ( L β π ) β π β ( R β π ) ( π = ( π +s π ) β§ π = ( π +s π ) ) β π <s π ) ) |
381 |
295 380
|
biimtrrid |
β’ ( π β ( ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) β π <s π ) ) |
382 |
|
reeanv |
β’ ( β π β ( L β π ) β π β ( R β π ) ( π = ( π +s π ) β§ π = ( π +s π ) ) β ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) ) |
383 |
|
lltropt |
β’ ( L β π ) <<s ( R β π ) |
384 |
383
|
a1i |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( L β π ) <<s ( R β π ) ) |
385 |
|
simprl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β ( L β π ) ) |
386 |
|
simprr |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β ( R β π ) ) |
387 |
384 385 386
|
ssltsepcd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π <s π ) |
388 |
1
|
adantr |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β β π₯ β No β π¦ β No β π§ β No ( ( ( ( bday β π₯ ) +no ( bday β π¦ ) ) βͺ ( ( bday β π₯ ) +no ( bday β π§ ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( π₯ +s π¦ ) β No β§ ( π¦ <s π§ β ( π¦ +s π₯ ) <s ( π§ +s π₯ ) ) ) ) ) |
389 |
2
|
adantr |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β No ) |
390 |
60
|
ad2antrl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β No ) |
391 |
131
|
ad2antll |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β π β No ) |
392 |
81
|
ad2antrl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
393 |
148
|
ad2antll |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
394 |
|
naddcl |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) β On ) |
395 |
40 68 394
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) β On |
396 |
|
naddcl |
β’ ( ( ( bday β π ) β On β§ ( bday β π ) β On ) β ( ( bday β π ) +no ( bday β π ) ) β On ) |
397 |
40 135 396
|
mp2an |
β’ ( ( bday β π ) +no ( bday β π ) ) β On |
398 |
|
onunel |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) β On β§ ( ( bday β π ) +no ( bday β π ) ) β On β§ ( ( bday β π ) +no ( bday β π ) ) β On ) β ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β§ ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) ) |
399 |
395 397 206 398
|
mp3an |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) β§ ( ( bday β π ) +no ( bday β π ) ) β ( ( bday β π ) +no ( bday β π ) ) ) ) |
400 |
392 393 399
|
sylanbrc |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) ) |
401 |
|
elun1 |
β’ ( ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( bday β π ) +no ( bday β π ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
402 |
400 401
|
syl |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) β ( ( ( bday β π ) +no ( bday β π ) ) βͺ ( ( bday β π ) +no ( bday β π ) ) ) ) |
403 |
388 389 390 391 402
|
addsproplem1 |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( π +s π ) β No β§ ( π <s π β ( π +s π ) <s ( π +s π ) ) ) ) |
404 |
403
|
simprd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π <s π β ( π +s π ) <s ( π +s π ) ) ) |
405 |
387 404
|
mpd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) <s ( π +s π ) ) |
406 |
389 390
|
addscomd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) = ( π +s π ) ) |
407 |
389 391
|
addscomd |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) = ( π +s π ) ) |
408 |
405 406 407
|
3brtr4d |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( π +s π ) <s ( π +s π ) ) |
409 |
|
breq12 |
β’ ( ( π = ( π +s π ) β§ π = ( π +s π ) ) β ( π <s π β ( π +s π ) <s ( π +s π ) ) ) |
410 |
408 409
|
syl5ibrcom |
β’ ( ( π β§ ( π β ( L β π ) β§ π β ( R β π ) ) ) β ( ( π = ( π +s π ) β§ π = ( π +s π ) ) β π <s π ) ) |
411 |
410
|
rexlimdvva |
β’ ( π β ( β π β ( L β π ) β π β ( R β π ) ( π = ( π +s π ) β§ π = ( π +s π ) ) β π <s π ) ) |
412 |
382 411
|
biimtrrid |
β’ ( π β ( ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) β π <s π ) ) |
413 |
381 412
|
jaod |
β’ ( π β ( ( ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) β¨ ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) ) β π <s π ) ) |
414 |
294 413
|
jaod |
β’ ( π β ( ( ( ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) β¨ ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) ) β¨ ( ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) β¨ ( β π β ( L β π ) π = ( π +s π ) β§ β π β ( R β π ) π = ( π +s π ) ) ) ) β π <s π ) ) |
415 |
182 414
|
biimtrid |
β’ ( π β ( ( π β ( { π β£ β π β ( L β π ) π = ( π +s π ) } βͺ { π β£ β π β ( L β π ) π = ( π +s π ) } ) β§ π β ( { π€ β£ β π β ( R β π ) π€ = ( π +s π ) } βͺ { π‘ β£ β π β ( R β π ) π‘ = ( π +s π ) } ) ) β π <s π ) ) |
416 |
415
|
3impib |
β’ ( ( π β§ π β ( { π β£ β π β ( L β π ) π = ( π +s π ) } βͺ { π β£ β π β ( L β π ) π = ( π +s π ) } ) β§ π β ( { π€ β£ β π β ( R β π ) π€ = ( π +s π ) } βͺ { π‘ β£ β π β ( R β π ) π‘ = ( π +s π ) } ) ) β π <s π ) |
417 |
10 17 92 159 416
|
ssltd |
β’ ( π β ( { π β£ β π β ( L β π ) π = ( π +s π ) } βͺ { π β£ β π β ( L β π ) π = ( π +s π ) } ) <<s ( { π€ β£ β π β ( R β π ) π€ = ( π +s π ) } βͺ { π‘ β£ β π β ( R β π ) π‘ = ( π +s π ) } ) ) |