| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addsproplem.1 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 2 |  | addsproplem2.2 | ⊢ ( 𝜑  →  𝑋  ∈   No  ) | 
						
							| 3 |  | addsproplem2.3 | ⊢ ( 𝜑  →  𝑌  ∈   No  ) | 
						
							| 4 |  | fvex | ⊢ (  L  ‘ 𝑋 )  ∈  V | 
						
							| 5 | 4 | abrexex | ⊢ { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∈  V | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∈  V ) | 
						
							| 7 |  | fvex | ⊢ (  L  ‘ 𝑌 )  ∈  V | 
						
							| 8 | 7 | abrexex | ⊢ { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) }  ∈  V | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) }  ∈  V ) | 
						
							| 10 | 6 9 | unexd | ⊢ ( 𝜑  →  ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  ∈  V ) | 
						
							| 11 |  | fvex | ⊢ (  R  ‘ 𝑋 )  ∈  V | 
						
							| 12 | 11 | abrexex | ⊢ { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∈  V | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∈  V ) | 
						
							| 14 |  | fvex | ⊢ (  R  ‘ 𝑌 )  ∈  V | 
						
							| 15 | 14 | abrexex | ⊢ { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) }  ∈  V | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) }  ∈  V ) | 
						
							| 17 | 13 16 | unexd | ⊢ ( 𝜑  →  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } )  ∈  V ) | 
						
							| 18 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑙  ∈  (  L  ‘ 𝑋 ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 19 |  | leftssno | ⊢ (  L  ‘ 𝑋 )  ⊆   No | 
						
							| 20 | 19 | sseli | ⊢ ( 𝑙  ∈  (  L  ‘ 𝑋 )  →  𝑙  ∈   No  ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑙  ∈  (  L  ‘ 𝑋 ) )  →  𝑙  ∈   No  ) | 
						
							| 22 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑙  ∈  (  L  ‘ 𝑋 ) )  →  𝑌  ∈   No  ) | 
						
							| 23 |  | 0sno | ⊢  0s   ∈   No | 
						
							| 24 | 23 | a1i | ⊢ ( ( 𝜑  ∧  𝑙  ∈  (  L  ‘ 𝑋 ) )  →   0s   ∈   No  ) | 
						
							| 25 |  | bday0s | ⊢ (  bday  ‘  0s  )  =  ∅ | 
						
							| 26 | 25 | oveq2i | ⊢ ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘  0s  ) )  =  ( (  bday  ‘ 𝑙 )  +no  ∅ ) | 
						
							| 27 |  | bdayelon | ⊢ (  bday  ‘ 𝑙 )  ∈  On | 
						
							| 28 |  | naddrid | ⊢ ( (  bday  ‘ 𝑙 )  ∈  On  →  ( (  bday  ‘ 𝑙 )  +no  ∅ )  =  (  bday  ‘ 𝑙 ) ) | 
						
							| 29 | 27 28 | ax-mp | ⊢ ( (  bday  ‘ 𝑙 )  +no  ∅ )  =  (  bday  ‘ 𝑙 ) | 
						
							| 30 | 26 29 | eqtri | ⊢ ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘  0s  ) )  =  (  bday  ‘ 𝑙 ) | 
						
							| 31 | 30 | uneq2i | ⊢ ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘  0s  ) ) )  =  ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∪  (  bday  ‘ 𝑙 ) ) | 
						
							| 32 |  | bdayelon | ⊢ (  bday  ‘ 𝑌 )  ∈  On | 
						
							| 33 |  | naddword1 | ⊢ ( ( (  bday  ‘ 𝑙 )  ∈  On  ∧  (  bday  ‘ 𝑌 )  ∈  On )  →  (  bday  ‘ 𝑙 )  ⊆  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 34 | 27 32 33 | mp2an | ⊢ (  bday  ‘ 𝑙 )  ⊆  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) ) | 
						
							| 35 |  | ssequn2 | ⊢ ( (  bday  ‘ 𝑙 )  ⊆  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ↔  ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∪  (  bday  ‘ 𝑙 ) )  =  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 36 | 34 35 | mpbi | ⊢ ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∪  (  bday  ‘ 𝑙 ) )  =  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) ) | 
						
							| 37 | 31 36 | eqtri | ⊢ ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘  0s  ) ) )  =  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) ) | 
						
							| 38 |  | leftssold | ⊢ (  L  ‘ 𝑋 )  ⊆  (  O  ‘ (  bday  ‘ 𝑋 ) ) | 
						
							| 39 | 38 | sseli | ⊢ ( 𝑙  ∈  (  L  ‘ 𝑋 )  →  𝑙  ∈  (  O  ‘ (  bday  ‘ 𝑋 ) ) ) | 
						
							| 40 |  | bdayelon | ⊢ (  bday  ‘ 𝑋 )  ∈  On | 
						
							| 41 |  | oldbday | ⊢ ( ( (  bday  ‘ 𝑋 )  ∈  On  ∧  𝑙  ∈   No  )  →  ( 𝑙  ∈  (  O  ‘ (  bday  ‘ 𝑋 ) )  ↔  (  bday  ‘ 𝑙 )  ∈  (  bday  ‘ 𝑋 ) ) ) | 
						
							| 42 | 40 20 41 | sylancr | ⊢ ( 𝑙  ∈  (  L  ‘ 𝑋 )  →  ( 𝑙  ∈  (  O  ‘ (  bday  ‘ 𝑋 ) )  ↔  (  bday  ‘ 𝑙 )  ∈  (  bday  ‘ 𝑋 ) ) ) | 
						
							| 43 | 39 42 | mpbid | ⊢ ( 𝑙  ∈  (  L  ‘ 𝑋 )  →  (  bday  ‘ 𝑙 )  ∈  (  bday  ‘ 𝑋 ) ) | 
						
							| 44 |  | naddel1 | ⊢ ( ( (  bday  ‘ 𝑙 )  ∈  On  ∧  (  bday  ‘ 𝑋 )  ∈  On  ∧  (  bday  ‘ 𝑌 )  ∈  On )  →  ( (  bday  ‘ 𝑙 )  ∈  (  bday  ‘ 𝑋 )  ↔  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) | 
						
							| 45 | 27 40 32 44 | mp3an | ⊢ ( (  bday  ‘ 𝑙 )  ∈  (  bday  ‘ 𝑋 )  ↔  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 46 | 43 45 | sylib | ⊢ ( 𝑙  ∈  (  L  ‘ 𝑋 )  →  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝜑  ∧  𝑙  ∈  (  L  ‘ 𝑋 ) )  →  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 48 |  | elun1 | ⊢ ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  →  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ( 𝜑  ∧  𝑙  ∈  (  L  ‘ 𝑋 ) )  →  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 50 | 37 49 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑙  ∈  (  L  ‘ 𝑋 ) )  →  ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘  0s  ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 51 | 18 21 22 24 50 | addsproplem1 | ⊢ ( ( 𝜑  ∧  𝑙  ∈  (  L  ‘ 𝑋 ) )  →  ( ( 𝑙  +s  𝑌 )  ∈   No   ∧  ( 𝑌  <s   0s   →  ( 𝑌  +s  𝑙 )  <s  (  0s   +s  𝑙 ) ) ) ) | 
						
							| 52 | 51 | simpld | ⊢ ( ( 𝜑  ∧  𝑙  ∈  (  L  ‘ 𝑋 ) )  →  ( 𝑙  +s  𝑌 )  ∈   No  ) | 
						
							| 53 |  | eleq1a | ⊢ ( ( 𝑙  +s  𝑌 )  ∈   No   →  ( 𝑝  =  ( 𝑙  +s  𝑌 )  →  𝑝  ∈   No  ) ) | 
						
							| 54 | 52 53 | syl | ⊢ ( ( 𝜑  ∧  𝑙  ∈  (  L  ‘ 𝑋 ) )  →  ( 𝑝  =  ( 𝑙  +s  𝑌 )  →  𝑝  ∈   No  ) ) | 
						
							| 55 | 54 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 )  →  𝑝  ∈   No  ) ) | 
						
							| 56 | 55 | abssdv | ⊢ ( 𝜑  →  { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ⊆   No  ) | 
						
							| 57 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  (  L  ‘ 𝑌 ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 58 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  (  L  ‘ 𝑌 ) )  →  𝑋  ∈   No  ) | 
						
							| 59 |  | leftssno | ⊢ (  L  ‘ 𝑌 )  ⊆   No | 
						
							| 60 | 59 | sseli | ⊢ ( 𝑚  ∈  (  L  ‘ 𝑌 )  →  𝑚  ∈   No  ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  (  L  ‘ 𝑌 ) )  →  𝑚  ∈   No  ) | 
						
							| 62 | 23 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  (  L  ‘ 𝑌 ) )  →   0s   ∈   No  ) | 
						
							| 63 | 25 | oveq2i | ⊢ ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘  0s  ) )  =  ( (  bday  ‘ 𝑋 )  +no  ∅ ) | 
						
							| 64 |  | naddrid | ⊢ ( (  bday  ‘ 𝑋 )  ∈  On  →  ( (  bday  ‘ 𝑋 )  +no  ∅ )  =  (  bday  ‘ 𝑋 ) ) | 
						
							| 65 | 40 64 | ax-mp | ⊢ ( (  bday  ‘ 𝑋 )  +no  ∅ )  =  (  bday  ‘ 𝑋 ) | 
						
							| 66 | 63 65 | eqtri | ⊢ ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘  0s  ) )  =  (  bday  ‘ 𝑋 ) | 
						
							| 67 | 66 | uneq2i | ⊢ ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘  0s  ) ) )  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∪  (  bday  ‘ 𝑋 ) ) | 
						
							| 68 |  | bdayelon | ⊢ (  bday  ‘ 𝑚 )  ∈  On | 
						
							| 69 |  | naddword1 | ⊢ ( ( (  bday  ‘ 𝑋 )  ∈  On  ∧  (  bday  ‘ 𝑚 )  ∈  On )  →  (  bday  ‘ 𝑋 )  ⊆  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) ) ) | 
						
							| 70 | 40 68 69 | mp2an | ⊢ (  bday  ‘ 𝑋 )  ⊆  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) ) | 
						
							| 71 |  | ssequn2 | ⊢ ( (  bday  ‘ 𝑋 )  ⊆  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ↔  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∪  (  bday  ‘ 𝑋 ) )  =  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) ) ) | 
						
							| 72 | 70 71 | mpbi | ⊢ ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∪  (  bday  ‘ 𝑋 ) )  =  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) ) | 
						
							| 73 | 67 72 | eqtri | ⊢ ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘  0s  ) ) )  =  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) ) | 
						
							| 74 |  | leftssold | ⊢ (  L  ‘ 𝑌 )  ⊆  (  O  ‘ (  bday  ‘ 𝑌 ) ) | 
						
							| 75 | 74 | sseli | ⊢ ( 𝑚  ∈  (  L  ‘ 𝑌 )  →  𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) ) ) | 
						
							| 76 |  | oldbday | ⊢ ( ( (  bday  ‘ 𝑌 )  ∈  On  ∧  𝑚  ∈   No  )  →  ( 𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ↔  (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 77 | 32 60 76 | sylancr | ⊢ ( 𝑚  ∈  (  L  ‘ 𝑌 )  →  ( 𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ↔  (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 78 | 75 77 | mpbid | ⊢ ( 𝑚  ∈  (  L  ‘ 𝑌 )  →  (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 ) ) | 
						
							| 79 |  | naddel2 | ⊢ ( ( (  bday  ‘ 𝑚 )  ∈  On  ∧  (  bday  ‘ 𝑌 )  ∈  On  ∧  (  bday  ‘ 𝑋 )  ∈  On )  →  ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ↔  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) | 
						
							| 80 | 68 32 40 79 | mp3an | ⊢ ( (  bday  ‘ 𝑚 )  ∈  (  bday  ‘ 𝑌 )  ↔  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 81 | 78 80 | sylib | ⊢ ( 𝑚  ∈  (  L  ‘ 𝑌 )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  (  L  ‘ 𝑌 ) )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 83 |  | elun1 | ⊢ ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 84 | 82 83 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  (  L  ‘ 𝑌 ) )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 85 | 73 84 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  (  L  ‘ 𝑌 ) )  →  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘  0s  ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 86 | 57 58 61 62 85 | addsproplem1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  (  L  ‘ 𝑌 ) )  →  ( ( 𝑋  +s  𝑚 )  ∈   No   ∧  ( 𝑚  <s   0s   →  ( 𝑚  +s  𝑋 )  <s  (  0s   +s  𝑋 ) ) ) ) | 
						
							| 87 | 86 | simpld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  (  L  ‘ 𝑌 ) )  →  ( 𝑋  +s  𝑚 )  ∈   No  ) | 
						
							| 88 |  | eleq1a | ⊢ ( ( 𝑋  +s  𝑚 )  ∈   No   →  ( 𝑞  =  ( 𝑋  +s  𝑚 )  →  𝑞  ∈   No  ) ) | 
						
							| 89 | 87 88 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  (  L  ‘ 𝑌 ) )  →  ( 𝑞  =  ( 𝑋  +s  𝑚 )  →  𝑞  ∈   No  ) ) | 
						
							| 90 | 89 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 )  →  𝑞  ∈   No  ) ) | 
						
							| 91 | 90 | abssdv | ⊢ ( 𝜑  →  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) }  ⊆   No  ) | 
						
							| 92 | 56 91 | unssd | ⊢ ( 𝜑  →  ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  ⊆   No  ) | 
						
							| 93 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 94 |  | rightssno | ⊢ (  R  ‘ 𝑋 )  ⊆   No | 
						
							| 95 | 94 | sseli | ⊢ ( 𝑟  ∈  (  R  ‘ 𝑋 )  →  𝑟  ∈   No  ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( 𝜑  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) )  →  𝑟  ∈   No  ) | 
						
							| 97 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) )  →  𝑌  ∈   No  ) | 
						
							| 98 | 23 | a1i | ⊢ ( ( 𝜑  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) )  →   0s   ∈   No  ) | 
						
							| 99 | 25 | oveq2i | ⊢ ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘  0s  ) )  =  ( (  bday  ‘ 𝑟 )  +no  ∅ ) | 
						
							| 100 |  | bdayelon | ⊢ (  bday  ‘ 𝑟 )  ∈  On | 
						
							| 101 |  | naddrid | ⊢ ( (  bday  ‘ 𝑟 )  ∈  On  →  ( (  bday  ‘ 𝑟 )  +no  ∅ )  =  (  bday  ‘ 𝑟 ) ) | 
						
							| 102 | 100 101 | ax-mp | ⊢ ( (  bday  ‘ 𝑟 )  +no  ∅ )  =  (  bday  ‘ 𝑟 ) | 
						
							| 103 | 99 102 | eqtri | ⊢ ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘  0s  ) )  =  (  bday  ‘ 𝑟 ) | 
						
							| 104 | 103 | uneq2i | ⊢ ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘  0s  ) ) )  =  ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∪  (  bday  ‘ 𝑟 ) ) | 
						
							| 105 |  | naddword1 | ⊢ ( ( (  bday  ‘ 𝑟 )  ∈  On  ∧  (  bday  ‘ 𝑌 )  ∈  On )  →  (  bday  ‘ 𝑟 )  ⊆  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 106 | 100 32 105 | mp2an | ⊢ (  bday  ‘ 𝑟 )  ⊆  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) ) | 
						
							| 107 |  | ssequn2 | ⊢ ( (  bday  ‘ 𝑟 )  ⊆  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ↔  ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∪  (  bday  ‘ 𝑟 ) )  =  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 108 | 106 107 | mpbi | ⊢ ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∪  (  bday  ‘ 𝑟 ) )  =  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) ) | 
						
							| 109 | 104 108 | eqtri | ⊢ ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘  0s  ) ) )  =  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) ) | 
						
							| 110 |  | rightssold | ⊢ (  R  ‘ 𝑋 )  ⊆  (  O  ‘ (  bday  ‘ 𝑋 ) ) | 
						
							| 111 | 110 | sseli | ⊢ ( 𝑟  ∈  (  R  ‘ 𝑋 )  →  𝑟  ∈  (  O  ‘ (  bday  ‘ 𝑋 ) ) ) | 
						
							| 112 |  | oldbday | ⊢ ( ( (  bday  ‘ 𝑋 )  ∈  On  ∧  𝑟  ∈   No  )  →  ( 𝑟  ∈  (  O  ‘ (  bday  ‘ 𝑋 ) )  ↔  (  bday  ‘ 𝑟 )  ∈  (  bday  ‘ 𝑋 ) ) ) | 
						
							| 113 | 40 95 112 | sylancr | ⊢ ( 𝑟  ∈  (  R  ‘ 𝑋 )  →  ( 𝑟  ∈  (  O  ‘ (  bday  ‘ 𝑋 ) )  ↔  (  bday  ‘ 𝑟 )  ∈  (  bday  ‘ 𝑋 ) ) ) | 
						
							| 114 | 111 113 | mpbid | ⊢ ( 𝑟  ∈  (  R  ‘ 𝑋 )  →  (  bday  ‘ 𝑟 )  ∈  (  bday  ‘ 𝑋 ) ) | 
						
							| 115 |  | naddel1 | ⊢ ( ( (  bday  ‘ 𝑟 )  ∈  On  ∧  (  bday  ‘ 𝑋 )  ∈  On  ∧  (  bday  ‘ 𝑌 )  ∈  On )  →  ( (  bday  ‘ 𝑟 )  ∈  (  bday  ‘ 𝑋 )  ↔  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) | 
						
							| 116 | 100 40 32 115 | mp3an | ⊢ ( (  bday  ‘ 𝑟 )  ∈  (  bday  ‘ 𝑋 )  ↔  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 117 | 114 116 | sylib | ⊢ ( 𝑟  ∈  (  R  ‘ 𝑋 )  →  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 118 | 117 | adantl | ⊢ ( ( 𝜑  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) )  →  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 119 |  | elun1 | ⊢ ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  →  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 120 | 118 119 | syl | ⊢ ( ( 𝜑  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) )  →  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 121 | 109 120 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) )  →  ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘  0s  ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 122 | 93 96 97 98 121 | addsproplem1 | ⊢ ( ( 𝜑  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) )  →  ( ( 𝑟  +s  𝑌 )  ∈   No   ∧  ( 𝑌  <s   0s   →  ( 𝑌  +s  𝑟 )  <s  (  0s   +s  𝑟 ) ) ) ) | 
						
							| 123 | 122 | simpld | ⊢ ( ( 𝜑  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) )  →  ( 𝑟  +s  𝑌 )  ∈   No  ) | 
						
							| 124 |  | eleq1a | ⊢ ( ( 𝑟  +s  𝑌 )  ∈   No   →  ( 𝑤  =  ( 𝑟  +s  𝑌 )  →  𝑤  ∈   No  ) ) | 
						
							| 125 | 123 124 | syl | ⊢ ( ( 𝜑  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) )  →  ( 𝑤  =  ( 𝑟  +s  𝑌 )  →  𝑤  ∈   No  ) ) | 
						
							| 126 | 125 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 )  →  𝑤  ∈   No  ) ) | 
						
							| 127 | 126 | abssdv | ⊢ ( 𝜑  →  { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ⊆   No  ) | 
						
							| 128 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 129 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) )  →  𝑋  ∈   No  ) | 
						
							| 130 |  | rightssno | ⊢ (  R  ‘ 𝑌 )  ⊆   No | 
						
							| 131 | 130 | sseli | ⊢ ( 𝑠  ∈  (  R  ‘ 𝑌 )  →  𝑠  ∈   No  ) | 
						
							| 132 | 131 | adantl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) )  →  𝑠  ∈   No  ) | 
						
							| 133 | 23 | a1i | ⊢ ( ( 𝜑  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) )  →   0s   ∈   No  ) | 
						
							| 134 | 66 | uneq2i | ⊢ ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘  0s  ) ) )  =  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∪  (  bday  ‘ 𝑋 ) ) | 
						
							| 135 |  | bdayelon | ⊢ (  bday  ‘ 𝑠 )  ∈  On | 
						
							| 136 |  | naddword1 | ⊢ ( ( (  bday  ‘ 𝑋 )  ∈  On  ∧  (  bday  ‘ 𝑠 )  ∈  On )  →  (  bday  ‘ 𝑋 )  ⊆  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) ) | 
						
							| 137 | 40 135 136 | mp2an | ⊢ (  bday  ‘ 𝑋 )  ⊆  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) | 
						
							| 138 |  | ssequn2 | ⊢ ( (  bday  ‘ 𝑋 )  ⊆  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ↔  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∪  (  bday  ‘ 𝑋 ) )  =  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) ) | 
						
							| 139 | 137 138 | mpbi | ⊢ ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∪  (  bday  ‘ 𝑋 ) )  =  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) | 
						
							| 140 | 134 139 | eqtri | ⊢ ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘  0s  ) ) )  =  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) | 
						
							| 141 |  | rightssold | ⊢ (  R  ‘ 𝑌 )  ⊆  (  O  ‘ (  bday  ‘ 𝑌 ) ) | 
						
							| 142 | 141 | sseli | ⊢ ( 𝑠  ∈  (  R  ‘ 𝑌 )  →  𝑠  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) ) ) | 
						
							| 143 |  | oldbday | ⊢ ( ( (  bday  ‘ 𝑌 )  ∈  On  ∧  𝑠  ∈   No  )  →  ( 𝑠  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ↔  (  bday  ‘ 𝑠 )  ∈  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 144 | 32 131 143 | sylancr | ⊢ ( 𝑠  ∈  (  R  ‘ 𝑌 )  →  ( 𝑠  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ↔  (  bday  ‘ 𝑠 )  ∈  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 145 | 142 144 | mpbid | ⊢ ( 𝑠  ∈  (  R  ‘ 𝑌 )  →  (  bday  ‘ 𝑠 )  ∈  (  bday  ‘ 𝑌 ) ) | 
						
							| 146 |  | naddel2 | ⊢ ( ( (  bday  ‘ 𝑠 )  ∈  On  ∧  (  bday  ‘ 𝑌 )  ∈  On  ∧  (  bday  ‘ 𝑋 )  ∈  On )  →  ( (  bday  ‘ 𝑠 )  ∈  (  bday  ‘ 𝑌 )  ↔  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) | 
						
							| 147 | 135 32 40 146 | mp3an | ⊢ ( (  bday  ‘ 𝑠 )  ∈  (  bday  ‘ 𝑌 )  ↔  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 148 | 145 147 | sylib | ⊢ ( 𝑠  ∈  (  R  ‘ 𝑌 )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 149 | 148 | adantl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 150 |  | elun1 | ⊢ ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 151 | 149 150 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 152 | 140 151 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) )  →  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘  0s  ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 153 | 128 129 132 133 152 | addsproplem1 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) )  →  ( ( 𝑋  +s  𝑠 )  ∈   No   ∧  ( 𝑠  <s   0s   →  ( 𝑠  +s  𝑋 )  <s  (  0s   +s  𝑋 ) ) ) ) | 
						
							| 154 | 153 | simpld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) )  →  ( 𝑋  +s  𝑠 )  ∈   No  ) | 
						
							| 155 |  | eleq1a | ⊢ ( ( 𝑋  +s  𝑠 )  ∈   No   →  ( 𝑡  =  ( 𝑋  +s  𝑠 )  →  𝑡  ∈   No  ) ) | 
						
							| 156 | 154 155 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) )  →  ( 𝑡  =  ( 𝑋  +s  𝑠 )  →  𝑡  ∈   No  ) ) | 
						
							| 157 | 156 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 )  →  𝑡  ∈   No  ) ) | 
						
							| 158 | 157 | abssdv | ⊢ ( 𝜑  →  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) }  ⊆   No  ) | 
						
							| 159 | 127 158 | unssd | ⊢ ( 𝜑  →  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } )  ⊆   No  ) | 
						
							| 160 |  | elun | ⊢ ( 𝑎  ∈  ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  ↔  ( 𝑎  ∈  { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∨  𝑎  ∈  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } ) ) | 
						
							| 161 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 162 |  | eqeq1 | ⊢ ( 𝑝  =  𝑎  →  ( 𝑝  =  ( 𝑙  +s  𝑌 )  ↔  𝑎  =  ( 𝑙  +s  𝑌 ) ) ) | 
						
							| 163 | 162 | rexbidv | ⊢ ( 𝑝  =  𝑎  →  ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 )  ↔  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 ) ) ) | 
						
							| 164 | 161 163 | elab | ⊢ ( 𝑎  ∈  { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ↔  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 ) ) | 
						
							| 165 |  | eqeq1 | ⊢ ( 𝑞  =  𝑎  →  ( 𝑞  =  ( 𝑋  +s  𝑚 )  ↔  𝑎  =  ( 𝑋  +s  𝑚 ) ) ) | 
						
							| 166 | 165 | rexbidv | ⊢ ( 𝑞  =  𝑎  →  ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 )  ↔  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 ) ) ) | 
						
							| 167 | 161 166 | elab | ⊢ ( 𝑎  ∈  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) }  ↔  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 ) ) | 
						
							| 168 | 164 167 | orbi12i | ⊢ ( ( 𝑎  ∈  { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∨  𝑎  ∈  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  ↔  ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 )  ∨  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 ) ) ) | 
						
							| 169 | 160 168 | bitri | ⊢ ( 𝑎  ∈  ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  ↔  ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 )  ∨  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 ) ) ) | 
						
							| 170 |  | elun | ⊢ ( 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } )  ↔  ( 𝑏  ∈  { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∨  𝑏  ∈  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) | 
						
							| 171 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 172 |  | eqeq1 | ⊢ ( 𝑤  =  𝑏  →  ( 𝑤  =  ( 𝑟  +s  𝑌 )  ↔  𝑏  =  ( 𝑟  +s  𝑌 ) ) ) | 
						
							| 173 | 172 | rexbidv | ⊢ ( 𝑤  =  𝑏  →  ( ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 )  ↔  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 ) ) ) | 
						
							| 174 | 171 173 | elab | ⊢ ( 𝑏  ∈  { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ↔  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 ) ) | 
						
							| 175 |  | eqeq1 | ⊢ ( 𝑡  =  𝑏  →  ( 𝑡  =  ( 𝑋  +s  𝑠 )  ↔  𝑏  =  ( 𝑋  +s  𝑠 ) ) ) | 
						
							| 176 | 175 | rexbidv | ⊢ ( 𝑡  =  𝑏  →  ( ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 )  ↔  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) ) ) | 
						
							| 177 | 171 176 | elab | ⊢ ( 𝑏  ∈  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) }  ↔  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) ) | 
						
							| 178 | 174 177 | orbi12i | ⊢ ( ( 𝑏  ∈  { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∨  𝑏  ∈  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } )  ↔  ( ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 )  ∨  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) ) ) | 
						
							| 179 | 170 178 | bitri | ⊢ ( 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } )  ↔  ( ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 )  ∨  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) ) ) | 
						
							| 180 | 169 179 | anbi12i | ⊢ ( ( 𝑎  ∈  ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  ∧  𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) )  ↔  ( ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 )  ∨  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 ) )  ∧  ( ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 )  ∨  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) ) ) ) | 
						
							| 181 |  | anddi | ⊢ ( ( ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 )  ∨  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 ) )  ∧  ( ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 )  ∨  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) ) )  ↔  ( ( ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 ) )  ∨  ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) ) )  ∨  ( ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 ) )  ∨  ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) ) ) ) ) | 
						
							| 182 | 180 181 | bitri | ⊢ ( ( 𝑎  ∈  ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  ∧  𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) )  ↔  ( ( ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 ) )  ∨  ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) ) )  ∨  ( ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 ) )  ∨  ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) ) ) ) ) | 
						
							| 183 |  | reeanv | ⊢ ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) ( 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  𝑏  =  ( 𝑟  +s  𝑌 ) )  ↔  ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 ) ) ) | 
						
							| 184 |  | lltropt | ⊢ (  L  ‘ 𝑋 )  <<s  (  R  ‘ 𝑋 ) | 
						
							| 185 | 184 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  (  L  ‘ 𝑋 )  <<s  (  R  ‘ 𝑋 ) ) | 
						
							| 186 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  𝑙  ∈  (  L  ‘ 𝑋 ) ) | 
						
							| 187 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  𝑟  ∈  (  R  ‘ 𝑋 ) ) | 
						
							| 188 | 185 186 187 | ssltsepcd | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  𝑙  <s  𝑟 ) | 
						
							| 189 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 190 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  𝑌  ∈   No  ) | 
						
							| 191 | 20 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  𝑙  ∈   No  ) | 
						
							| 192 | 95 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  𝑟  ∈   No  ) | 
						
							| 193 |  | naddcom | ⊢ ( ( (  bday  ‘ 𝑌 )  ∈  On  ∧  (  bday  ‘ 𝑙 )  ∈  On )  →  ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑙 ) )  =  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 194 | 32 27 193 | mp2an | ⊢ ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑙 ) )  =  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) ) | 
						
							| 195 | 46 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 196 | 194 195 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑙 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 197 |  | naddcom | ⊢ ( ( (  bday  ‘ 𝑌 )  ∈  On  ∧  (  bday  ‘ 𝑟 )  ∈  On )  →  ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑟 ) )  =  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 198 | 32 100 197 | mp2an | ⊢ ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑟 ) )  =  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) ) | 
						
							| 199 | 117 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 200 | 198 199 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑟 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 201 |  | naddcl | ⊢ ( ( (  bday  ‘ 𝑌 )  ∈  On  ∧  (  bday  ‘ 𝑙 )  ∈  On )  →  ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑙 ) )  ∈  On ) | 
						
							| 202 | 32 27 201 | mp2an | ⊢ ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑙 ) )  ∈  On | 
						
							| 203 |  | naddcl | ⊢ ( ( (  bday  ‘ 𝑌 )  ∈  On  ∧  (  bday  ‘ 𝑟 )  ∈  On )  →  ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑟 ) )  ∈  On ) | 
						
							| 204 | 32 100 203 | mp2an | ⊢ ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑟 ) )  ∈  On | 
						
							| 205 |  | naddcl | ⊢ ( ( (  bday  ‘ 𝑋 )  ∈  On  ∧  (  bday  ‘ 𝑌 )  ∈  On )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On ) | 
						
							| 206 | 40 32 205 | mp2an | ⊢ ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On | 
						
							| 207 |  | onunel | ⊢ ( ( ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑙 ) )  ∈  On  ∧  ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑟 ) )  ∈  On  ∧  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On )  →  ( ( ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑙 ) )  ∪  ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ↔  ( ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑙 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∧  ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑟 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) ) | 
						
							| 208 | 202 204 206 207 | mp3an | ⊢ ( ( ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑙 ) )  ∪  ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ↔  ( ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑙 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∧  ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑟 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) | 
						
							| 209 | 196 200 208 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑙 ) )  ∪  ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 210 |  | elun1 | ⊢ ( ( ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑙 ) )  ∪  ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  →  ( ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑙 ) )  ∪  ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 211 | 209 210 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑙 ) )  ∪  ( (  bday  ‘ 𝑌 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 212 | 189 190 191 192 211 | addsproplem1 | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( 𝑌  +s  𝑙 )  ∈   No   ∧  ( 𝑙  <s  𝑟  →  ( 𝑙  +s  𝑌 )  <s  ( 𝑟  +s  𝑌 ) ) ) ) | 
						
							| 213 | 212 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( 𝑙  <s  𝑟  →  ( 𝑙  +s  𝑌 )  <s  ( 𝑟  +s  𝑌 ) ) ) | 
						
							| 214 | 188 213 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( 𝑙  +s  𝑌 )  <s  ( 𝑟  +s  𝑌 ) ) | 
						
							| 215 |  | breq12 | ⊢ ( ( 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  𝑏  =  ( 𝑟  +s  𝑌 ) )  →  ( 𝑎  <s  𝑏  ↔  ( 𝑙  +s  𝑌 )  <s  ( 𝑟  +s  𝑌 ) ) ) | 
						
							| 216 | 214 215 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  𝑏  =  ( 𝑟  +s  𝑌 ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 217 | 216 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) ( 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  𝑏  =  ( 𝑟  +s  𝑌 ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 218 | 183 217 | biimtrrid | ⊢ ( 𝜑  →  ( ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 219 |  | reeanv | ⊢ ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) ( 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  𝑏  =  ( 𝑋  +s  𝑠 ) )  ↔  ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) ) ) | 
						
							| 220 | 52 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( 𝑙  +s  𝑌 )  ∈   No  ) | 
						
							| 221 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 222 | 20 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  𝑙  ∈   No  ) | 
						
							| 223 | 131 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  𝑠  ∈   No  ) | 
						
							| 224 | 23 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →   0s   ∈   No  ) | 
						
							| 225 | 30 | uneq2i | ⊢ ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∪  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘  0s  ) ) )  =  ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∪  (  bday  ‘ 𝑙 ) ) | 
						
							| 226 |  | naddword1 | ⊢ ( ( (  bday  ‘ 𝑙 )  ∈  On  ∧  (  bday  ‘ 𝑠 )  ∈  On )  →  (  bday  ‘ 𝑙 )  ⊆  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) ) ) | 
						
							| 227 | 27 135 226 | mp2an | ⊢ (  bday  ‘ 𝑙 )  ⊆  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) ) | 
						
							| 228 |  | ssequn2 | ⊢ ( (  bday  ‘ 𝑙 )  ⊆  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ↔  ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∪  (  bday  ‘ 𝑙 ) )  =  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) ) ) | 
						
							| 229 | 227 228 | mpbi | ⊢ ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∪  (  bday  ‘ 𝑙 ) )  =  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) ) | 
						
							| 230 | 225 229 | eqtri | ⊢ ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∪  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘  0s  ) ) )  =  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) ) | 
						
							| 231 |  | naddel1 | ⊢ ( ( (  bday  ‘ 𝑙 )  ∈  On  ∧  (  bday  ‘ 𝑋 )  ∈  On  ∧  (  bday  ‘ 𝑠 )  ∈  On )  →  ( (  bday  ‘ 𝑙 )  ∈  (  bday  ‘ 𝑋 )  ↔  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) ) ) | 
						
							| 232 | 27 40 135 231 | mp3an | ⊢ ( (  bday  ‘ 𝑙 )  ∈  (  bday  ‘ 𝑋 )  ↔  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) ) | 
						
							| 233 | 43 232 | sylib | ⊢ ( 𝑙  ∈  (  L  ‘ 𝑋 )  →  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) ) | 
						
							| 234 | 233 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) ) | 
						
							| 235 | 148 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 236 |  | ontr1 | ⊢ ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On  →  ( ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∧  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) )  →  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) | 
						
							| 237 | 206 236 | ax-mp | ⊢ ( ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∧  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) )  →  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 238 | 234 235 237 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 239 |  | elun1 | ⊢ ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  →  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 240 | 238 239 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 241 | 230 240 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∪  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘  0s  ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 242 | 221 222 223 224 241 | addsproplem1 | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( ( 𝑙  +s  𝑠 )  ∈   No   ∧  ( 𝑠  <s   0s   →  ( 𝑠  +s  𝑙 )  <s  (  0s   +s  𝑙 ) ) ) ) | 
						
							| 243 | 242 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( 𝑙  +s  𝑠 )  ∈   No  ) | 
						
							| 244 | 154 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( 𝑋  +s  𝑠 )  ∈   No  ) | 
						
							| 245 |  | rightval | ⊢ (  R  ‘ 𝑌 )  =  { 𝑠  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ∣  𝑌  <s  𝑠 } | 
						
							| 246 | 245 | reqabi | ⊢ ( 𝑠  ∈  (  R  ‘ 𝑌 )  ↔  ( 𝑠  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ∧  𝑌  <s  𝑠 ) ) | 
						
							| 247 | 246 | simprbi | ⊢ ( 𝑠  ∈  (  R  ‘ 𝑌 )  →  𝑌  <s  𝑠 ) | 
						
							| 248 | 247 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  𝑌  <s  𝑠 ) | 
						
							| 249 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  𝑌  ∈   No  ) | 
						
							| 250 | 46 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 251 |  | naddcl | ⊢ ( ( (  bday  ‘ 𝑙 )  ∈  On  ∧  (  bday  ‘ 𝑌 )  ∈  On )  →  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On ) | 
						
							| 252 | 27 32 251 | mp2an | ⊢ ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On | 
						
							| 253 |  | naddcl | ⊢ ( ( (  bday  ‘ 𝑙 )  ∈  On  ∧  (  bday  ‘ 𝑠 )  ∈  On )  →  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  On ) | 
						
							| 254 | 27 135 253 | mp2an | ⊢ ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  On | 
						
							| 255 |  | onunel | ⊢ ( ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On  ∧  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  On  ∧  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On )  →  ( ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ↔  ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∧  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) ) | 
						
							| 256 | 252 254 206 255 | mp3an | ⊢ ( ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ↔  ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∧  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) | 
						
							| 257 | 250 238 256 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 258 |  | elun1 | ⊢ ( ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  →  ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 259 | 257 258 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 260 | 221 222 249 223 259 | addsproplem1 | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( ( 𝑙  +s  𝑌 )  ∈   No   ∧  ( 𝑌  <s  𝑠  →  ( 𝑌  +s  𝑙 )  <s  ( 𝑠  +s  𝑙 ) ) ) ) | 
						
							| 261 | 260 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( 𝑌  <s  𝑠  →  ( 𝑌  +s  𝑙 )  <s  ( 𝑠  +s  𝑙 ) ) ) | 
						
							| 262 | 248 261 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( 𝑌  +s  𝑙 )  <s  ( 𝑠  +s  𝑙 ) ) | 
						
							| 263 | 222 249 | addscomd | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( 𝑙  +s  𝑌 )  =  ( 𝑌  +s  𝑙 ) ) | 
						
							| 264 | 222 223 | addscomd | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( 𝑙  +s  𝑠 )  =  ( 𝑠  +s  𝑙 ) ) | 
						
							| 265 | 262 263 264 | 3brtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( 𝑙  +s  𝑌 )  <s  ( 𝑙  +s  𝑠 ) ) | 
						
							| 266 |  | leftval | ⊢ (  L  ‘ 𝑋 )  =  { 𝑙  ∈  (  O  ‘ (  bday  ‘ 𝑋 ) )  ∣  𝑙  <s  𝑋 } | 
						
							| 267 | 266 | reqabi | ⊢ ( 𝑙  ∈  (  L  ‘ 𝑋 )  ↔  ( 𝑙  ∈  (  O  ‘ (  bday  ‘ 𝑋 ) )  ∧  𝑙  <s  𝑋 ) ) | 
						
							| 268 | 267 | simprbi | ⊢ ( 𝑙  ∈  (  L  ‘ 𝑋 )  →  𝑙  <s  𝑋 ) | 
						
							| 269 | 268 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  𝑙  <s  𝑋 ) | 
						
							| 270 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  𝑋  ∈   No  ) | 
						
							| 271 |  | naddcom | ⊢ ( ( (  bday  ‘ 𝑠 )  ∈  On  ∧  (  bday  ‘ 𝑙 )  ∈  On )  →  ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑙 ) )  =  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) ) ) | 
						
							| 272 | 135 27 271 | mp2an | ⊢ ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑙 ) )  =  ( (  bday  ‘ 𝑙 )  +no  (  bday  ‘ 𝑠 ) ) | 
						
							| 273 | 272 238 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑙 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 274 |  | naddcom | ⊢ ( ( (  bday  ‘ 𝑠 )  ∈  On  ∧  (  bday  ‘ 𝑋 )  ∈  On )  →  ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑋 ) )  =  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) ) | 
						
							| 275 | 135 40 274 | mp2an | ⊢ ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑋 ) )  =  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) | 
						
							| 276 | 275 235 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑋 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 277 |  | naddcl | ⊢ ( ( (  bday  ‘ 𝑠 )  ∈  On  ∧  (  bday  ‘ 𝑙 )  ∈  On )  →  ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑙 ) )  ∈  On ) | 
						
							| 278 | 135 27 277 | mp2an | ⊢ ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑙 ) )  ∈  On | 
						
							| 279 |  | naddcl | ⊢ ( ( (  bday  ‘ 𝑠 )  ∈  On  ∧  (  bday  ‘ 𝑋 )  ∈  On )  →  ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑋 ) )  ∈  On ) | 
						
							| 280 | 135 40 279 | mp2an | ⊢ ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑋 ) )  ∈  On | 
						
							| 281 |  | onunel | ⊢ ( ( ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑙 ) )  ∈  On  ∧  ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑋 ) )  ∈  On  ∧  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On )  →  ( ( ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑙 ) )  ∪  ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑋 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ↔  ( ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑙 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∧  ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑋 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) ) | 
						
							| 282 | 278 280 206 281 | mp3an | ⊢ ( ( ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑙 ) )  ∪  ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑋 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ↔  ( ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑙 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∧  ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑋 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) | 
						
							| 283 | 273 276 282 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑙 ) )  ∪  ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑋 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 284 |  | elun1 | ⊢ ( ( ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑙 ) )  ∪  ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑋 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  →  ( ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑙 ) )  ∪  ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑋 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 285 | 283 284 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑙 ) )  ∪  ( (  bday  ‘ 𝑠 )  +no  (  bday  ‘ 𝑋 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 286 | 221 223 222 270 285 | addsproplem1 | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( ( 𝑠  +s  𝑙 )  ∈   No   ∧  ( 𝑙  <s  𝑋  →  ( 𝑙  +s  𝑠 )  <s  ( 𝑋  +s  𝑠 ) ) ) ) | 
						
							| 287 | 286 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( 𝑙  <s  𝑋  →  ( 𝑙  +s  𝑠 )  <s  ( 𝑋  +s  𝑠 ) ) ) | 
						
							| 288 | 269 287 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( 𝑙  +s  𝑠 )  <s  ( 𝑋  +s  𝑠 ) ) | 
						
							| 289 | 220 243 244 265 288 | slttrd | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( 𝑙  +s  𝑌 )  <s  ( 𝑋  +s  𝑠 ) ) | 
						
							| 290 |  | breq12 | ⊢ ( ( 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  𝑏  =  ( 𝑋  +s  𝑠 ) )  →  ( 𝑎  <s  𝑏  ↔  ( 𝑙  +s  𝑌 )  <s  ( 𝑋  +s  𝑠 ) ) ) | 
						
							| 291 | 289 290 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑙  ∈  (  L  ‘ 𝑋 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( ( 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  𝑏  =  ( 𝑋  +s  𝑠 ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 292 | 291 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) ( 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  𝑏  =  ( 𝑋  +s  𝑠 ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 293 | 219 292 | biimtrrid | ⊢ ( 𝜑  →  ( ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 294 | 218 293 | jaod | ⊢ ( 𝜑  →  ( ( ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 ) )  ∨  ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 295 |  | reeanv | ⊢ ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) ( 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  𝑏  =  ( 𝑟  +s  𝑌 ) )  ↔  ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 ) ) ) | 
						
							| 296 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 297 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  𝑋  ∈   No  ) | 
						
							| 298 | 60 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  𝑚  ∈   No  ) | 
						
							| 299 | 23 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →   0s   ∈   No  ) | 
						
							| 300 | 81 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 301 | 300 83 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 302 | 73 301 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘  0s  ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 303 | 296 297 298 299 302 | addsproplem1 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( 𝑋  +s  𝑚 )  ∈   No   ∧  ( 𝑚  <s   0s   →  ( 𝑚  +s  𝑋 )  <s  (  0s   +s  𝑋 ) ) ) ) | 
						
							| 304 | 303 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( 𝑋  +s  𝑚 )  ∈   No  ) | 
						
							| 305 | 95 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  𝑟  ∈   No  ) | 
						
							| 306 | 103 | uneq2i | ⊢ ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘  0s  ) ) )  =  ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∪  (  bday  ‘ 𝑟 ) ) | 
						
							| 307 |  | naddword1 | ⊢ ( ( (  bday  ‘ 𝑟 )  ∈  On  ∧  (  bday  ‘ 𝑚 )  ∈  On )  →  (  bday  ‘ 𝑟 )  ⊆  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) ) ) | 
						
							| 308 | 100 68 307 | mp2an | ⊢ (  bday  ‘ 𝑟 )  ⊆  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) ) | 
						
							| 309 |  | ssequn2 | ⊢ ( (  bday  ‘ 𝑟 )  ⊆  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ↔  ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∪  (  bday  ‘ 𝑟 ) )  =  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) ) ) | 
						
							| 310 | 308 309 | mpbi | ⊢ ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∪  (  bday  ‘ 𝑟 ) )  =  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) ) | 
						
							| 311 | 306 310 | eqtri | ⊢ ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘  0s  ) ) )  =  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) ) | 
						
							| 312 |  | naddel1 | ⊢ ( ( (  bday  ‘ 𝑟 )  ∈  On  ∧  (  bday  ‘ 𝑋 )  ∈  On  ∧  (  bday  ‘ 𝑚 )  ∈  On )  →  ( (  bday  ‘ 𝑟 )  ∈  (  bday  ‘ 𝑋 )  ↔  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) ) ) ) | 
						
							| 313 | 100 40 68 312 | mp3an | ⊢ ( (  bday  ‘ 𝑟 )  ∈  (  bday  ‘ 𝑋 )  ↔  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) ) ) | 
						
							| 314 | 114 313 | sylib | ⊢ ( 𝑟  ∈  (  R  ‘ 𝑋 )  →  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) ) ) | 
						
							| 315 | 314 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) ) ) | 
						
							| 316 |  | ontr1 | ⊢ ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On  →  ( ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∧  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) )  →  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) | 
						
							| 317 | 206 316 | ax-mp | ⊢ ( ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∧  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) )  →  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 318 | 315 300 317 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 319 |  | elun1 | ⊢ ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  →  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 320 | 318 319 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 321 | 311 320 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘  0s  ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 322 | 296 305 298 299 321 | addsproplem1 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( 𝑟  +s  𝑚 )  ∈   No   ∧  ( 𝑚  <s   0s   →  ( 𝑚  +s  𝑟 )  <s  (  0s   +s  𝑟 ) ) ) ) | 
						
							| 323 | 322 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( 𝑟  +s  𝑚 )  ∈   No  ) | 
						
							| 324 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  𝑌  ∈   No  ) | 
						
							| 325 | 117 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 326 | 325 119 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 327 | 109 326 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘  0s  ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 328 | 296 305 324 299 327 | addsproplem1 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( 𝑟  +s  𝑌 )  ∈   No   ∧  ( 𝑌  <s   0s   →  ( 𝑌  +s  𝑟 )  <s  (  0s   +s  𝑟 ) ) ) ) | 
						
							| 329 | 328 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( 𝑟  +s  𝑌 )  ∈   No  ) | 
						
							| 330 |  | rightval | ⊢ (  R  ‘ 𝑋 )  =  { 𝑟  ∈  (  O  ‘ (  bday  ‘ 𝑋 ) )  ∣  𝑋  <s  𝑟 } | 
						
							| 331 | 330 | eleq2i | ⊢ ( 𝑟  ∈  (  R  ‘ 𝑋 )  ↔  𝑟  ∈  { 𝑟  ∈  (  O  ‘ (  bday  ‘ 𝑋 ) )  ∣  𝑋  <s  𝑟 } ) | 
						
							| 332 | 331 | biimpi | ⊢ ( 𝑟  ∈  (  R  ‘ 𝑋 )  →  𝑟  ∈  { 𝑟  ∈  (  O  ‘ (  bday  ‘ 𝑋 ) )  ∣  𝑋  <s  𝑟 } ) | 
						
							| 333 | 332 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  𝑟  ∈  { 𝑟  ∈  (  O  ‘ (  bday  ‘ 𝑋 ) )  ∣  𝑋  <s  𝑟 } ) | 
						
							| 334 |  | rabid | ⊢ ( 𝑟  ∈  { 𝑟  ∈  (  O  ‘ (  bday  ‘ 𝑋 ) )  ∣  𝑋  <s  𝑟 }  ↔  ( 𝑟  ∈  (  O  ‘ (  bday  ‘ 𝑋 ) )  ∧  𝑋  <s  𝑟 ) ) | 
						
							| 335 | 333 334 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( 𝑟  ∈  (  O  ‘ (  bday  ‘ 𝑋 ) )  ∧  𝑋  <s  𝑟 ) ) | 
						
							| 336 | 335 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  𝑋  <s  𝑟 ) | 
						
							| 337 |  | naddcom | ⊢ ( ( (  bday  ‘ 𝑚 )  ∈  On  ∧  (  bday  ‘ 𝑋 )  ∈  On )  →  ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑋 ) )  =  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) ) ) | 
						
							| 338 | 68 40 337 | mp2an | ⊢ ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑋 ) )  =  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) ) | 
						
							| 339 | 338 300 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑋 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 340 |  | naddcom | ⊢ ( ( (  bday  ‘ 𝑚 )  ∈  On  ∧  (  bday  ‘ 𝑟 )  ∈  On )  →  ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑟 ) )  =  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) ) ) | 
						
							| 341 | 68 100 340 | mp2an | ⊢ ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑟 ) )  =  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) ) | 
						
							| 342 | 341 318 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑟 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 343 |  | naddcl | ⊢ ( ( (  bday  ‘ 𝑚 )  ∈  On  ∧  (  bday  ‘ 𝑋 )  ∈  On )  →  ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑋 ) )  ∈  On ) | 
						
							| 344 | 68 40 343 | mp2an | ⊢ ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑋 ) )  ∈  On | 
						
							| 345 |  | naddcl | ⊢ ( ( (  bday  ‘ 𝑚 )  ∈  On  ∧  (  bday  ‘ 𝑟 )  ∈  On )  →  ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑟 ) )  ∈  On ) | 
						
							| 346 | 68 100 345 | mp2an | ⊢ ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑟 ) )  ∈  On | 
						
							| 347 |  | onunel | ⊢ ( ( ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑋 ) )  ∈  On  ∧  ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑟 ) )  ∈  On  ∧  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On )  →  ( ( ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑋 ) )  ∪  ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ↔  ( ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑋 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∧  ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑟 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) ) | 
						
							| 348 | 344 346 206 347 | mp3an | ⊢ ( ( ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑋 ) )  ∪  ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ↔  ( ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑋 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∧  ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑟 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) | 
						
							| 349 | 339 342 348 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑋 ) )  ∪  ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 350 |  | elun1 | ⊢ ( ( ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑋 ) )  ∪  ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  →  ( ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑋 ) )  ∪  ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 351 | 349 350 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑋 ) )  ∪  ( (  bday  ‘ 𝑚 )  +no  (  bday  ‘ 𝑟 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 352 | 296 298 297 305 351 | addsproplem1 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( 𝑚  +s  𝑋 )  ∈   No   ∧  ( 𝑋  <s  𝑟  →  ( 𝑋  +s  𝑚 )  <s  ( 𝑟  +s  𝑚 ) ) ) ) | 
						
							| 353 | 352 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( 𝑋  <s  𝑟  →  ( 𝑋  +s  𝑚 )  <s  ( 𝑟  +s  𝑚 ) ) ) | 
						
							| 354 | 336 353 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( 𝑋  +s  𝑚 )  <s  ( 𝑟  +s  𝑚 ) ) | 
						
							| 355 |  | leftval | ⊢ (  L  ‘ 𝑌 )  =  { 𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ∣  𝑚  <s  𝑌 } | 
						
							| 356 | 355 | eleq2i | ⊢ ( 𝑚  ∈  (  L  ‘ 𝑌 )  ↔  𝑚  ∈  { 𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ∣  𝑚  <s  𝑌 } ) | 
						
							| 357 | 356 | biimpi | ⊢ ( 𝑚  ∈  (  L  ‘ 𝑌 )  →  𝑚  ∈  { 𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ∣  𝑚  <s  𝑌 } ) | 
						
							| 358 | 357 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  𝑚  ∈  { 𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ∣  𝑚  <s  𝑌 } ) | 
						
							| 359 |  | rabid | ⊢ ( 𝑚  ∈  { 𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ∣  𝑚  <s  𝑌 }  ↔  ( 𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ∧  𝑚  <s  𝑌 ) ) | 
						
							| 360 | 358 359 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( 𝑚  ∈  (  O  ‘ (  bday  ‘ 𝑌 ) )  ∧  𝑚  <s  𝑌 ) ) | 
						
							| 361 | 360 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  𝑚  <s  𝑌 ) | 
						
							| 362 |  | naddcl | ⊢ ( ( (  bday  ‘ 𝑟 )  ∈  On  ∧  (  bday  ‘ 𝑚 )  ∈  On )  →  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  On ) | 
						
							| 363 | 100 68 362 | mp2an | ⊢ ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  On | 
						
							| 364 |  | naddcl | ⊢ ( ( (  bday  ‘ 𝑟 )  ∈  On  ∧  (  bday  ‘ 𝑌 )  ∈  On )  →  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On ) | 
						
							| 365 | 100 32 364 | mp2an | ⊢ ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On | 
						
							| 366 |  | onunel | ⊢ ( ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  On  ∧  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On  ∧  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On )  →  ( ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ↔  ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∧  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) ) | 
						
							| 367 | 363 365 206 366 | mp3an | ⊢ ( ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ↔  ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∧  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) | 
						
							| 368 | 318 325 367 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 369 |  | elun1 | ⊢ ( ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  →  ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 370 | 368 369 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑟 )  +no  (  bday  ‘ 𝑌 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 371 | 296 305 298 324 370 | addsproplem1 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( 𝑟  +s  𝑚 )  ∈   No   ∧  ( 𝑚  <s  𝑌  →  ( 𝑚  +s  𝑟 )  <s  ( 𝑌  +s  𝑟 ) ) ) ) | 
						
							| 372 | 371 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( 𝑚  <s  𝑌  →  ( 𝑚  +s  𝑟 )  <s  ( 𝑌  +s  𝑟 ) ) ) | 
						
							| 373 | 361 372 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( 𝑚  +s  𝑟 )  <s  ( 𝑌  +s  𝑟 ) ) | 
						
							| 374 | 305 298 | addscomd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( 𝑟  +s  𝑚 )  =  ( 𝑚  +s  𝑟 ) ) | 
						
							| 375 | 305 324 | addscomd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( 𝑟  +s  𝑌 )  =  ( 𝑌  +s  𝑟 ) ) | 
						
							| 376 | 373 374 375 | 3brtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( 𝑟  +s  𝑚 )  <s  ( 𝑟  +s  𝑌 ) ) | 
						
							| 377 | 304 323 329 354 376 | slttrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( 𝑋  +s  𝑚 )  <s  ( 𝑟  +s  𝑌 ) ) | 
						
							| 378 |  | breq12 | ⊢ ( ( 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  𝑏  =  ( 𝑟  +s  𝑌 ) )  →  ( 𝑎  <s  𝑏  ↔  ( 𝑋  +s  𝑚 )  <s  ( 𝑟  +s  𝑌 ) ) ) | 
						
							| 379 | 377 378 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑟  ∈  (  R  ‘ 𝑋 ) ) )  →  ( ( 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  𝑏  =  ( 𝑟  +s  𝑌 ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 380 | 379 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) ( 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  𝑏  =  ( 𝑟  +s  𝑌 ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 381 | 295 380 | biimtrrid | ⊢ ( 𝜑  →  ( ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 382 |  | reeanv | ⊢ ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) ( 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  𝑏  =  ( 𝑋  +s  𝑠 ) )  ↔  ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) ) ) | 
						
							| 383 |  | lltropt | ⊢ (  L  ‘ 𝑌 )  <<s  (  R  ‘ 𝑌 ) | 
						
							| 384 | 383 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  (  L  ‘ 𝑌 )  <<s  (  R  ‘ 𝑌 ) ) | 
						
							| 385 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  𝑚  ∈  (  L  ‘ 𝑌 ) ) | 
						
							| 386 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  𝑠  ∈  (  R  ‘ 𝑌 ) ) | 
						
							| 387 | 384 385 386 | ssltsepcd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  𝑚  <s  𝑠 ) | 
						
							| 388 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑧  ∈   No  ( ( ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑦 ) )  ∪  ( (  bday  ‘ 𝑥 )  +no  (  bday  ‘ 𝑧 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) )  →  ( ( 𝑥  +s  𝑦 )  ∈   No   ∧  ( 𝑦  <s  𝑧  →  ( 𝑦  +s  𝑥 )  <s  ( 𝑧  +s  𝑥 ) ) ) ) ) | 
						
							| 389 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  𝑋  ∈   No  ) | 
						
							| 390 | 60 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  𝑚  ∈   No  ) | 
						
							| 391 | 131 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  𝑠  ∈   No  ) | 
						
							| 392 | 81 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 393 | 148 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 394 |  | naddcl | ⊢ ( ( (  bday  ‘ 𝑋 )  ∈  On  ∧  (  bday  ‘ 𝑚 )  ∈  On )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  On ) | 
						
							| 395 | 40 68 394 | mp2an | ⊢ ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  On | 
						
							| 396 |  | naddcl | ⊢ ( ( (  bday  ‘ 𝑋 )  ∈  On  ∧  (  bday  ‘ 𝑠 )  ∈  On )  →  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∈  On ) | 
						
							| 397 | 40 135 396 | mp2an | ⊢ ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∈  On | 
						
							| 398 |  | onunel | ⊢ ( ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  On  ∧  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∈  On  ∧  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∈  On )  →  ( ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ↔  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∧  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) ) | 
						
							| 399 | 395 397 206 398 | mp3an | ⊢ ( ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ↔  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∧  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) ) | 
						
							| 400 | 392 393 399 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) ) ) | 
						
							| 401 |  | elun1 | ⊢ ( ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) )  ∈  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  →  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 402 | 400 401 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑚 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑠 ) ) )  ∈  ( ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑌 ) )  ∪  ( (  bday  ‘ 𝑋 )  +no  (  bday  ‘ 𝑍 ) ) ) ) | 
						
							| 403 | 388 389 390 391 402 | addsproplem1 | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( ( 𝑋  +s  𝑚 )  ∈   No   ∧  ( 𝑚  <s  𝑠  →  ( 𝑚  +s  𝑋 )  <s  ( 𝑠  +s  𝑋 ) ) ) ) | 
						
							| 404 | 403 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( 𝑚  <s  𝑠  →  ( 𝑚  +s  𝑋 )  <s  ( 𝑠  +s  𝑋 ) ) ) | 
						
							| 405 | 387 404 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( 𝑚  +s  𝑋 )  <s  ( 𝑠  +s  𝑋 ) ) | 
						
							| 406 | 389 390 | addscomd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( 𝑋  +s  𝑚 )  =  ( 𝑚  +s  𝑋 ) ) | 
						
							| 407 | 389 391 | addscomd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( 𝑋  +s  𝑠 )  =  ( 𝑠  +s  𝑋 ) ) | 
						
							| 408 | 405 406 407 | 3brtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( 𝑋  +s  𝑚 )  <s  ( 𝑋  +s  𝑠 ) ) | 
						
							| 409 |  | breq12 | ⊢ ( ( 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  𝑏  =  ( 𝑋  +s  𝑠 ) )  →  ( 𝑎  <s  𝑏  ↔  ( 𝑋  +s  𝑚 )  <s  ( 𝑋  +s  𝑠 ) ) ) | 
						
							| 410 | 408 409 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  (  L  ‘ 𝑌 )  ∧  𝑠  ∈  (  R  ‘ 𝑌 ) ) )  →  ( ( 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  𝑏  =  ( 𝑋  +s  𝑠 ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 411 | 410 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) ( 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  𝑏  =  ( 𝑋  +s  𝑠 ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 412 | 382 411 | biimtrrid | ⊢ ( 𝜑  →  ( ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 413 | 381 412 | jaod | ⊢ ( 𝜑  →  ( ( ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 ) )  ∨  ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 414 | 294 413 | jaod | ⊢ ( 𝜑  →  ( ( ( ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 ) )  ∨  ( ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑎  =  ( 𝑙  +s  𝑌 )  ∧  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) ) )  ∨  ( ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑏  =  ( 𝑟  +s  𝑌 ) )  ∨  ( ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑎  =  ( 𝑋  +s  𝑚 )  ∧  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑏  =  ( 𝑋  +s  𝑠 ) ) ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 415 | 182 414 | biimtrid | ⊢ ( 𝜑  →  ( ( 𝑎  ∈  ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  ∧  𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 416 | 415 | 3impib | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  ∧  𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) )  →  𝑎  <s  𝑏 ) | 
						
							| 417 | 10 17 92 159 416 | ssltd | ⊢ ( 𝜑  →  ( { 𝑝  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝑋 ) 𝑝  =  ( 𝑙  +s  𝑌 ) }  ∪  { 𝑞  ∣  ∃ 𝑚  ∈  (  L  ‘ 𝑌 ) 𝑞  =  ( 𝑋  +s  𝑚 ) } )  <<s  ( { 𝑤  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝑋 ) 𝑤  =  ( 𝑟  +s  𝑌 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  (  R  ‘ 𝑌 ) 𝑡  =  ( 𝑋  +s  𝑠 ) } ) ) |