| Step |
Hyp |
Ref |
Expression |
| 1 |
|
naddrid |
⊢ ( 𝐴 ∈ On → ( 𝐴 +no ∅ ) = 𝐴 ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no ∅ ) = 𝐴 ) |
| 3 |
|
0ss |
⊢ ∅ ⊆ 𝐵 |
| 4 |
|
0elon |
⊢ ∅ ∈ On |
| 5 |
|
naddss2 |
⊢ ( ( ∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ⊆ 𝐵 ↔ ( 𝐴 +no ∅ ) ⊆ ( 𝐴 +no 𝐵 ) ) ) |
| 6 |
4 5
|
mp3an1 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ⊆ 𝐵 ↔ ( 𝐴 +no ∅ ) ⊆ ( 𝐴 +no 𝐵 ) ) ) |
| 7 |
6
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ⊆ 𝐵 ↔ ( 𝐴 +no ∅ ) ⊆ ( 𝐴 +no 𝐵 ) ) ) |
| 8 |
3 7
|
mpbii |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no ∅ ) ⊆ ( 𝐴 +no 𝐵 ) ) |
| 9 |
2 8
|
eqsstrrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ ( 𝐴 +no 𝐵 ) ) |