Metamath Proof Explorer


Theorem naddword1

Description: Weak-ordering principle for natural addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion naddword1
|- ( ( A e. On /\ B e. On ) -> A C_ ( A +no B ) )

Proof

Step Hyp Ref Expression
1 naddrid
 |-  ( A e. On -> ( A +no (/) ) = A )
2 1 adantr
 |-  ( ( A e. On /\ B e. On ) -> ( A +no (/) ) = A )
3 0ss
 |-  (/) C_ B
4 0elon
 |-  (/) e. On
5 naddss2
 |-  ( ( (/) e. On /\ B e. On /\ A e. On ) -> ( (/) C_ B <-> ( A +no (/) ) C_ ( A +no B ) ) )
6 4 5 mp3an1
 |-  ( ( B e. On /\ A e. On ) -> ( (/) C_ B <-> ( A +no (/) ) C_ ( A +no B ) ) )
7 6 ancoms
 |-  ( ( A e. On /\ B e. On ) -> ( (/) C_ B <-> ( A +no (/) ) C_ ( A +no B ) ) )
8 3 7 mpbii
 |-  ( ( A e. On /\ B e. On ) -> ( A +no (/) ) C_ ( A +no B ) )
9 2 8 eqsstrrd
 |-  ( ( A e. On /\ B e. On ) -> A C_ ( A +no B ) )