| Step |
Hyp |
Ref |
Expression |
| 1 |
|
naddrid |
|- ( A e. On -> ( A +no (/) ) = A ) |
| 2 |
1
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( A +no (/) ) = A ) |
| 3 |
|
0ss |
|- (/) C_ B |
| 4 |
|
0elon |
|- (/) e. On |
| 5 |
|
naddss2 |
|- ( ( (/) e. On /\ B e. On /\ A e. On ) -> ( (/) C_ B <-> ( A +no (/) ) C_ ( A +no B ) ) ) |
| 6 |
4 5
|
mp3an1 |
|- ( ( B e. On /\ A e. On ) -> ( (/) C_ B <-> ( A +no (/) ) C_ ( A +no B ) ) ) |
| 7 |
6
|
ancoms |
|- ( ( A e. On /\ B e. On ) -> ( (/) C_ B <-> ( A +no (/) ) C_ ( A +no B ) ) ) |
| 8 |
3 7
|
mpbii |
|- ( ( A e. On /\ B e. On ) -> ( A +no (/) ) C_ ( A +no B ) ) |
| 9 |
2 8
|
eqsstrrd |
|- ( ( A e. On /\ B e. On ) -> A C_ ( A +no B ) ) |