Step |
Hyp |
Ref |
Expression |
1 |
|
naddss1 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B <-> ( A +no C ) C_ ( B +no C ) ) ) |
2 |
|
naddcom |
|- ( ( A e. On /\ C e. On ) -> ( A +no C ) = ( C +no A ) ) |
3 |
2
|
3adant2 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A +no C ) = ( C +no A ) ) |
4 |
|
naddcom |
|- ( ( B e. On /\ C e. On ) -> ( B +no C ) = ( C +no B ) ) |
5 |
4
|
3adant1 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B +no C ) = ( C +no B ) ) |
6 |
3 5
|
sseq12d |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +no C ) C_ ( B +no C ) <-> ( C +no A ) C_ ( C +no B ) ) ) |
7 |
1 6
|
bitrd |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B <-> ( C +no A ) C_ ( C +no B ) ) ) |