| Step |
Hyp |
Ref |
Expression |
| 1 |
|
naddel1 |
|- ( ( B e. On /\ A e. On /\ C e. On ) -> ( B e. A <-> ( B +no C ) e. ( A +no C ) ) ) |
| 2 |
1
|
3com12 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B e. A <-> ( B +no C ) e. ( A +no C ) ) ) |
| 3 |
2
|
notbid |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( -. B e. A <-> -. ( B +no C ) e. ( A +no C ) ) ) |
| 4 |
|
ontri1 |
|- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> -. B e. A ) ) |
| 5 |
4
|
3adant3 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B <-> -. B e. A ) ) |
| 6 |
|
naddcl |
|- ( ( A e. On /\ C e. On ) -> ( A +no C ) e. On ) |
| 7 |
6
|
3adant2 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A +no C ) e. On ) |
| 8 |
|
naddcl |
|- ( ( B e. On /\ C e. On ) -> ( B +no C ) e. On ) |
| 9 |
8
|
3adant1 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B +no C ) e. On ) |
| 10 |
|
ontri1 |
|- ( ( ( A +no C ) e. On /\ ( B +no C ) e. On ) -> ( ( A +no C ) C_ ( B +no C ) <-> -. ( B +no C ) e. ( A +no C ) ) ) |
| 11 |
7 9 10
|
syl2anc |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A +no C ) C_ ( B +no C ) <-> -. ( B +no C ) e. ( A +no C ) ) ) |
| 12 |
3 5 11
|
3bitr4d |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B <-> ( A +no C ) C_ ( B +no C ) ) ) |