Step |
Hyp |
Ref |
Expression |
1 |
|
naddelim |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A e. B -> ( A +no C ) e. ( B +no C ) ) ) |
2 |
|
naddssim |
|- ( ( B e. On /\ A e. On /\ C e. On ) -> ( B C_ A -> ( B +no C ) C_ ( A +no C ) ) ) |
3 |
2
|
3com12 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B C_ A -> ( B +no C ) C_ ( A +no C ) ) ) |
4 |
|
ontri1 |
|- ( ( B e. On /\ A e. On ) -> ( B C_ A <-> -. A e. B ) ) |
5 |
4
|
ancoms |
|- ( ( A e. On /\ B e. On ) -> ( B C_ A <-> -. A e. B ) ) |
6 |
5
|
3adant3 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B C_ A <-> -. A e. B ) ) |
7 |
|
naddcl |
|- ( ( B e. On /\ C e. On ) -> ( B +no C ) e. On ) |
8 |
7
|
3adant1 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B +no C ) e. On ) |
9 |
|
naddcl |
|- ( ( A e. On /\ C e. On ) -> ( A +no C ) e. On ) |
10 |
|
ontri1 |
|- ( ( ( B +no C ) e. On /\ ( A +no C ) e. On ) -> ( ( B +no C ) C_ ( A +no C ) <-> -. ( A +no C ) e. ( B +no C ) ) ) |
11 |
8 9 10
|
3imp3i2an |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( B +no C ) C_ ( A +no C ) <-> -. ( A +no C ) e. ( B +no C ) ) ) |
12 |
3 6 11
|
3imtr3d |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( -. A e. B -> -. ( A +no C ) e. ( B +no C ) ) ) |
13 |
1 12
|
impcon4bid |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A e. B <-> ( A +no C ) e. ( B +no C ) ) ) |