Metamath Proof Explorer


Theorem naddel1

Description: Ordinal less-than is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024)

Ref Expression
Assertion naddel1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴𝐵 ↔ ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 naddelim ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴𝐵 → ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ) )
2 naddssim ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵𝐴 → ( 𝐵 +no 𝐶 ) ⊆ ( 𝐴 +no 𝐶 ) ) )
3 2 3com12 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵𝐴 → ( 𝐵 +no 𝐶 ) ⊆ ( 𝐴 +no 𝐶 ) ) )
4 ontri1 ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵𝐴 ↔ ¬ 𝐴𝐵 ) )
5 4 ancoms ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵𝐴 ↔ ¬ 𝐴𝐵 ) )
6 5 3adant3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵𝐴 ↔ ¬ 𝐴𝐵 ) )
7 naddcl ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) ∈ On )
8 7 3adant1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) ∈ On )
9 naddcl ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 +no 𝐶 ) ∈ On )
10 ontri1 ( ( ( 𝐵 +no 𝐶 ) ∈ On ∧ ( 𝐴 +no 𝐶 ) ∈ On ) → ( ( 𝐵 +no 𝐶 ) ⊆ ( 𝐴 +no 𝐶 ) ↔ ¬ ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ) )
11 8 9 10 3imp3i2an ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 +no 𝐶 ) ⊆ ( 𝐴 +no 𝐶 ) ↔ ¬ ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ) )
12 3 6 11 3imtr3d ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ¬ 𝐴𝐵 → ¬ ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ) )
13 1 12 impcon4bid ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴𝐵 ↔ ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ) )