| Step | Hyp | Ref | Expression | 
						
							| 1 |  | naddelim | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐴  ∈  𝐵  →  ( 𝐴  +no  𝐶 )  ∈  ( 𝐵  +no  𝐶 ) ) ) | 
						
							| 2 |  | naddssim | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐵  ⊆  𝐴  →  ( 𝐵  +no  𝐶 )  ⊆  ( 𝐴  +no  𝐶 ) ) ) | 
						
							| 3 | 2 | 3com12 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐵  ⊆  𝐴  →  ( 𝐵  +no  𝐶 )  ⊆  ( 𝐴  +no  𝐶 ) ) ) | 
						
							| 4 |  | ontri1 | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On )  →  ( 𝐵  ⊆  𝐴  ↔  ¬  𝐴  ∈  𝐵 ) ) | 
						
							| 5 | 4 | ancoms | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐵  ⊆  𝐴  ↔  ¬  𝐴  ∈  𝐵 ) ) | 
						
							| 6 | 5 | 3adant3 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐵  ⊆  𝐴  ↔  ¬  𝐴  ∈  𝐵 ) ) | 
						
							| 7 |  | naddcl | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐵  +no  𝐶 )  ∈  On ) | 
						
							| 8 | 7 | 3adant1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐵  +no  𝐶 )  ∈  On ) | 
						
							| 9 |  | naddcl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐴  +no  𝐶 )  ∈  On ) | 
						
							| 10 |  | ontri1 | ⊢ ( ( ( 𝐵  +no  𝐶 )  ∈  On  ∧  ( 𝐴  +no  𝐶 )  ∈  On )  →  ( ( 𝐵  +no  𝐶 )  ⊆  ( 𝐴  +no  𝐶 )  ↔  ¬  ( 𝐴  +no  𝐶 )  ∈  ( 𝐵  +no  𝐶 ) ) ) | 
						
							| 11 | 8 9 10 | 3imp3i2an | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( 𝐵  +no  𝐶 )  ⊆  ( 𝐴  +no  𝐶 )  ↔  ¬  ( 𝐴  +no  𝐶 )  ∈  ( 𝐵  +no  𝐶 ) ) ) | 
						
							| 12 | 3 6 11 | 3imtr3d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ¬  𝐴  ∈  𝐵  →  ¬  ( 𝐴  +no  𝐶 )  ∈  ( 𝐵  +no  𝐶 ) ) ) | 
						
							| 13 | 1 12 | impcon4bid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐴  ∈  𝐵  ↔  ( 𝐴  +no  𝐶 )  ∈  ( 𝐵  +no  𝐶 ) ) ) |