Step |
Hyp |
Ref |
Expression |
1 |
|
naddelim |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ) ) |
2 |
|
naddssim |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ⊆ 𝐴 → ( 𝐵 +no 𝐶 ) ⊆ ( 𝐴 +no 𝐶 ) ) ) |
3 |
2
|
3com12 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ⊆ 𝐴 → ( 𝐵 +no 𝐶 ) ⊆ ( 𝐴 +no 𝐶 ) ) ) |
4 |
|
ontri1 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
5 |
4
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
7 |
|
naddcl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) ∈ On ) |
8 |
7
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) ∈ On ) |
9 |
|
naddcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 +no 𝐶 ) ∈ On ) |
10 |
|
ontri1 |
⊢ ( ( ( 𝐵 +no 𝐶 ) ∈ On ∧ ( 𝐴 +no 𝐶 ) ∈ On ) → ( ( 𝐵 +no 𝐶 ) ⊆ ( 𝐴 +no 𝐶 ) ↔ ¬ ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ) ) |
11 |
8 9 10
|
3imp3i2an |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 +no 𝐶 ) ⊆ ( 𝐴 +no 𝐶 ) ↔ ¬ ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ) ) |
12 |
3 6 11
|
3imtr3d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ¬ 𝐴 ∈ 𝐵 → ¬ ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ) ) |
13 |
1 12
|
impcon4bid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ) ) |