Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑏 = 𝐴 → ( 𝑏 +no 𝐶 ) = ( 𝐴 +no 𝐶 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑏 = 𝐴 → ( ( 𝑏 +no 𝐶 ) ∈ 𝑥 ↔ ( 𝐴 +no 𝐶 ) ∈ 𝑥 ) ) |
3 |
2
|
rspcv |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑏 ∈ 𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 → ( 𝐴 +no 𝐶 ) ∈ 𝑥 ) ) |
4 |
3
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ On ) → ( ∀ 𝑏 ∈ 𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 → ( 𝐴 +no 𝐶 ) ∈ 𝑥 ) ) |
5 |
4
|
adantld |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 ∈ On ) → ( ( ∀ 𝑐 ∈ 𝐶 ( 𝐵 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 ) → ( 𝐴 +no 𝐶 ) ∈ 𝑥 ) ) |
6 |
5
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ∈ 𝐵 ) → ∀ 𝑥 ∈ On ( ( ∀ 𝑐 ∈ 𝐶 ( 𝐵 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 ) → ( 𝐴 +no 𝐶 ) ∈ 𝑥 ) ) |
7 |
|
ovex |
⊢ ( 𝐴 +no 𝐶 ) ∈ V |
8 |
7
|
elintrab |
⊢ ( ( 𝐴 +no 𝐶 ) ∈ ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑐 ∈ 𝐶 ( 𝐵 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 ) } ↔ ∀ 𝑥 ∈ On ( ( ∀ 𝑐 ∈ 𝐶 ( 𝐵 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 ) → ( 𝐴 +no 𝐶 ) ∈ 𝑥 ) ) |
9 |
6 8
|
sylibr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 +no 𝐶 ) ∈ ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑐 ∈ 𝐶 ( 𝐵 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 ) } ) |
10 |
|
naddov2 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) = ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑐 ∈ 𝐶 ( 𝐵 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 ) } ) |
11 |
10
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) = ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑐 ∈ 𝐶 ( 𝐵 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 ) } ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐵 +no 𝐶 ) = ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑐 ∈ 𝐶 ( 𝐵 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏 ∈ 𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 ) } ) |
13 |
9 12
|
eleqtrrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ) |
14 |
13
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ) ) |