Metamath Proof Explorer


Theorem naddelim

Description: Ordinal less-than is preserved by natural addition. (Contributed by Scott Fenton, 9-Sep-2024)

Ref Expression
Assertion naddelim ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴𝐵 → ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝑏 = 𝐴 → ( 𝑏 +no 𝐶 ) = ( 𝐴 +no 𝐶 ) )
2 1 eleq1d ( 𝑏 = 𝐴 → ( ( 𝑏 +no 𝐶 ) ∈ 𝑥 ↔ ( 𝐴 +no 𝐶 ) ∈ 𝑥 ) )
3 2 rspcv ( 𝐴𝐵 → ( ∀ 𝑏𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 → ( 𝐴 +no 𝐶 ) ∈ 𝑥 ) )
4 3 ad2antlr ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴𝐵 ) ∧ 𝑥 ∈ On ) → ( ∀ 𝑏𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 → ( 𝐴 +no 𝐶 ) ∈ 𝑥 ) )
5 4 adantld ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴𝐵 ) ∧ 𝑥 ∈ On ) → ( ( ∀ 𝑐𝐶 ( 𝐵 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 ) → ( 𝐴 +no 𝐶 ) ∈ 𝑥 ) )
6 5 ralrimiva ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴𝐵 ) → ∀ 𝑥 ∈ On ( ( ∀ 𝑐𝐶 ( 𝐵 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 ) → ( 𝐴 +no 𝐶 ) ∈ 𝑥 ) )
7 ovex ( 𝐴 +no 𝐶 ) ∈ V
8 7 elintrab ( ( 𝐴 +no 𝐶 ) ∈ { 𝑥 ∈ On ∣ ( ∀ 𝑐𝐶 ( 𝐵 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 ) } ↔ ∀ 𝑥 ∈ On ( ( ∀ 𝑐𝐶 ( 𝐵 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 ) → ( 𝐴 +no 𝐶 ) ∈ 𝑥 ) )
9 6 8 sylibr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴𝐵 ) → ( 𝐴 +no 𝐶 ) ∈ { 𝑥 ∈ On ∣ ( ∀ 𝑐𝐶 ( 𝐵 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 ) } )
10 naddov2 ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) = { 𝑥 ∈ On ∣ ( ∀ 𝑐𝐶 ( 𝐵 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 ) } )
11 10 3adant1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) = { 𝑥 ∈ On ∣ ( ∀ 𝑐𝐶 ( 𝐵 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 ) } )
12 11 adantr ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴𝐵 ) → ( 𝐵 +no 𝐶 ) = { 𝑥 ∈ On ∣ ( ∀ 𝑐𝐶 ( 𝐵 +no 𝑐 ) ∈ 𝑥 ∧ ∀ 𝑏𝐵 ( 𝑏 +no 𝐶 ) ∈ 𝑥 ) } )
13 9 12 eleqtrrd ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴𝐵 ) → ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) )
14 13 ex ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴𝐵 → ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ) )