Metamath Proof Explorer


Theorem naddelim

Description: Ordinal less-than is preserved by natural addition. (Contributed by Scott Fenton, 9-Sep-2024)

Ref Expression
Assertion naddelim Could not format assertion : No typesetting found for |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A e. B -> ( A +no C ) e. ( B +no C ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 oveq1 Could not format ( b = A -> ( b +no C ) = ( A +no C ) ) : No typesetting found for |- ( b = A -> ( b +no C ) = ( A +no C ) ) with typecode |-
2 1 eleq1d Could not format ( b = A -> ( ( b +no C ) e. x <-> ( A +no C ) e. x ) ) : No typesetting found for |- ( b = A -> ( ( b +no C ) e. x <-> ( A +no C ) e. x ) ) with typecode |-
3 2 rspcv Could not format ( A e. B -> ( A. b e. B ( b +no C ) e. x -> ( A +no C ) e. x ) ) : No typesetting found for |- ( A e. B -> ( A. b e. B ( b +no C ) e. x -> ( A +no C ) e. x ) ) with typecode |-
4 3 ad2antlr Could not format ( ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A e. B ) /\ x e. On ) -> ( A. b e. B ( b +no C ) e. x -> ( A +no C ) e. x ) ) : No typesetting found for |- ( ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A e. B ) /\ x e. On ) -> ( A. b e. B ( b +no C ) e. x -> ( A +no C ) e. x ) ) with typecode |-
5 4 adantld Could not format ( ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A e. B ) /\ x e. On ) -> ( ( A. c e. C ( B +no c ) e. x /\ A. b e. B ( b +no C ) e. x ) -> ( A +no C ) e. x ) ) : No typesetting found for |- ( ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A e. B ) /\ x e. On ) -> ( ( A. c e. C ( B +no c ) e. x /\ A. b e. B ( b +no C ) e. x ) -> ( A +no C ) e. x ) ) with typecode |-
6 5 ralrimiva Could not format ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A e. B ) -> A. x e. On ( ( A. c e. C ( B +no c ) e. x /\ A. b e. B ( b +no C ) e. x ) -> ( A +no C ) e. x ) ) : No typesetting found for |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A e. B ) -> A. x e. On ( ( A. c e. C ( B +no c ) e. x /\ A. b e. B ( b +no C ) e. x ) -> ( A +no C ) e. x ) ) with typecode |-
7 ovex Could not format ( A +no C ) e. _V : No typesetting found for |- ( A +no C ) e. _V with typecode |-
8 7 elintrab Could not format ( ( A +no C ) e. |^| { x e. On | ( A. c e. C ( B +no c ) e. x /\ A. b e. B ( b +no C ) e. x ) } <-> A. x e. On ( ( A. c e. C ( B +no c ) e. x /\ A. b e. B ( b +no C ) e. x ) -> ( A +no C ) e. x ) ) : No typesetting found for |- ( ( A +no C ) e. |^| { x e. On | ( A. c e. C ( B +no c ) e. x /\ A. b e. B ( b +no C ) e. x ) } <-> A. x e. On ( ( A. c e. C ( B +no c ) e. x /\ A. b e. B ( b +no C ) e. x ) -> ( A +no C ) e. x ) ) with typecode |-
9 6 8 sylibr Could not format ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A e. B ) -> ( A +no C ) e. |^| { x e. On | ( A. c e. C ( B +no c ) e. x /\ A. b e. B ( b +no C ) e. x ) } ) : No typesetting found for |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A e. B ) -> ( A +no C ) e. |^| { x e. On | ( A. c e. C ( B +no c ) e. x /\ A. b e. B ( b +no C ) e. x ) } ) with typecode |-
10 naddov2 Could not format ( ( B e. On /\ C e. On ) -> ( B +no C ) = |^| { x e. On | ( A. c e. C ( B +no c ) e. x /\ A. b e. B ( b +no C ) e. x ) } ) : No typesetting found for |- ( ( B e. On /\ C e. On ) -> ( B +no C ) = |^| { x e. On | ( A. c e. C ( B +no c ) e. x /\ A. b e. B ( b +no C ) e. x ) } ) with typecode |-
11 10 3adant1 Could not format ( ( A e. On /\ B e. On /\ C e. On ) -> ( B +no C ) = |^| { x e. On | ( A. c e. C ( B +no c ) e. x /\ A. b e. B ( b +no C ) e. x ) } ) : No typesetting found for |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B +no C ) = |^| { x e. On | ( A. c e. C ( B +no c ) e. x /\ A. b e. B ( b +no C ) e. x ) } ) with typecode |-
12 11 adantr Could not format ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A e. B ) -> ( B +no C ) = |^| { x e. On | ( A. c e. C ( B +no c ) e. x /\ A. b e. B ( b +no C ) e. x ) } ) : No typesetting found for |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A e. B ) -> ( B +no C ) = |^| { x e. On | ( A. c e. C ( B +no c ) e. x /\ A. b e. B ( b +no C ) e. x ) } ) with typecode |-
13 9 12 eleqtrrd Could not format ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A e. B ) -> ( A +no C ) e. ( B +no C ) ) : No typesetting found for |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ A e. B ) -> ( A +no C ) e. ( B +no C ) ) with typecode |-
14 13 ex Could not format ( ( A e. On /\ B e. On /\ C e. On ) -> ( A e. B -> ( A +no C ) e. ( B +no C ) ) ) : No typesetting found for |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A e. B -> ( A +no C ) e. ( B +no C ) ) ) with typecode |-