Step |
Hyp |
Ref |
Expression |
1 |
|
naddov |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = ∩ { 𝑥 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ 𝑥 ∧ ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ 𝑥 ) } ) |
2 |
|
snssi |
⊢ ( 𝐴 ∈ On → { 𝐴 } ⊆ On ) |
3 |
|
onss |
⊢ ( 𝐵 ∈ On → 𝐵 ⊆ On ) |
4 |
|
xpss12 |
⊢ ( ( { 𝐴 } ⊆ On ∧ 𝐵 ⊆ On ) → ( { 𝐴 } × 𝐵 ) ⊆ ( On × On ) ) |
5 |
2 3 4
|
syl2an |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( { 𝐴 } × 𝐵 ) ⊆ ( On × On ) ) |
6 |
|
naddfn |
⊢ +no Fn ( On × On ) |
7 |
6
|
fndmi |
⊢ dom +no = ( On × On ) |
8 |
5 7
|
sseqtrrdi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( { 𝐴 } × 𝐵 ) ⊆ dom +no ) |
9 |
|
fnfun |
⊢ ( +no Fn ( On × On ) → Fun +no ) |
10 |
6 9
|
ax-mp |
⊢ Fun +no |
11 |
|
funimassov |
⊢ ( ( Fun +no ∧ ( { 𝐴 } × 𝐵 ) ⊆ dom +no ) → ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ 𝑥 ↔ ∀ 𝑡 ∈ { 𝐴 } ∀ 𝑦 ∈ 𝐵 ( 𝑡 +no 𝑦 ) ∈ 𝑥 ) ) |
12 |
10 11
|
mpan |
⊢ ( ( { 𝐴 } × 𝐵 ) ⊆ dom +no → ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ 𝑥 ↔ ∀ 𝑡 ∈ { 𝐴 } ∀ 𝑦 ∈ 𝐵 ( 𝑡 +no 𝑦 ) ∈ 𝑥 ) ) |
13 |
8 12
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ 𝑥 ↔ ∀ 𝑡 ∈ { 𝐴 } ∀ 𝑦 ∈ 𝐵 ( 𝑡 +no 𝑦 ) ∈ 𝑥 ) ) |
14 |
|
oveq1 |
⊢ ( 𝑡 = 𝐴 → ( 𝑡 +no 𝑦 ) = ( 𝐴 +no 𝑦 ) ) |
15 |
14
|
eleq1d |
⊢ ( 𝑡 = 𝐴 → ( ( 𝑡 +no 𝑦 ) ∈ 𝑥 ↔ ( 𝐴 +no 𝑦 ) ∈ 𝑥 ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑡 = 𝐴 → ( ∀ 𝑦 ∈ 𝐵 ( 𝑡 +no 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝐴 +no 𝑦 ) ∈ 𝑥 ) ) |
17 |
16
|
ralsng |
⊢ ( 𝐴 ∈ On → ( ∀ 𝑡 ∈ { 𝐴 } ∀ 𝑦 ∈ 𝐵 ( 𝑡 +no 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝐴 +no 𝑦 ) ∈ 𝑥 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∀ 𝑡 ∈ { 𝐴 } ∀ 𝑦 ∈ 𝐵 ( 𝑡 +no 𝑦 ) ∈ 𝑥 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝐴 +no 𝑦 ) ∈ 𝑥 ) ) |
19 |
13 18
|
bitrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ 𝑥 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝐴 +no 𝑦 ) ∈ 𝑥 ) ) |
20 |
|
onss |
⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) |
21 |
|
snssi |
⊢ ( 𝐵 ∈ On → { 𝐵 } ⊆ On ) |
22 |
|
xpss12 |
⊢ ( ( 𝐴 ⊆ On ∧ { 𝐵 } ⊆ On ) → ( 𝐴 × { 𝐵 } ) ⊆ ( On × On ) ) |
23 |
20 21 22
|
syl2an |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 × { 𝐵 } ) ⊆ ( On × On ) ) |
24 |
23 7
|
sseqtrrdi |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 × { 𝐵 } ) ⊆ dom +no ) |
25 |
|
funimassov |
⊢ ( ( Fun +no ∧ ( 𝐴 × { 𝐵 } ) ⊆ dom +no ) → ( ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ 𝑥 ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑡 ∈ { 𝐵 } ( 𝑧 +no 𝑡 ) ∈ 𝑥 ) ) |
26 |
10 25
|
mpan |
⊢ ( ( 𝐴 × { 𝐵 } ) ⊆ dom +no → ( ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ 𝑥 ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑡 ∈ { 𝐵 } ( 𝑧 +no 𝑡 ) ∈ 𝑥 ) ) |
27 |
24 26
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ 𝑥 ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑡 ∈ { 𝐵 } ( 𝑧 +no 𝑡 ) ∈ 𝑥 ) ) |
28 |
|
oveq2 |
⊢ ( 𝑡 = 𝐵 → ( 𝑧 +no 𝑡 ) = ( 𝑧 +no 𝐵 ) ) |
29 |
28
|
eleq1d |
⊢ ( 𝑡 = 𝐵 → ( ( 𝑧 +no 𝑡 ) ∈ 𝑥 ↔ ( 𝑧 +no 𝐵 ) ∈ 𝑥 ) ) |
30 |
29
|
ralsng |
⊢ ( 𝐵 ∈ On → ( ∀ 𝑡 ∈ { 𝐵 } ( 𝑧 +no 𝑡 ) ∈ 𝑥 ↔ ( 𝑧 +no 𝐵 ) ∈ 𝑥 ) ) |
31 |
30
|
ralbidv |
⊢ ( 𝐵 ∈ On → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑡 ∈ { 𝐵 } ( 𝑧 +no 𝑡 ) ∈ 𝑥 ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑧 +no 𝐵 ) ∈ 𝑥 ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑡 ∈ { 𝐵 } ( 𝑧 +no 𝑡 ) ∈ 𝑥 ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑧 +no 𝐵 ) ∈ 𝑥 ) ) |
33 |
27 32
|
bitrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ 𝑥 ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑧 +no 𝐵 ) ∈ 𝑥 ) ) |
34 |
19 33
|
anbi12d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ 𝑥 ∧ ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ 𝑥 ) ↔ ( ∀ 𝑦 ∈ 𝐵 ( 𝐴 +no 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑧 +no 𝐵 ) ∈ 𝑥 ) ) ) |
35 |
34
|
rabbidv |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → { 𝑥 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ 𝑥 ∧ ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ 𝑥 ) } = { 𝑥 ∈ On ∣ ( ∀ 𝑦 ∈ 𝐵 ( 𝐴 +no 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑧 +no 𝐵 ) ∈ 𝑥 ) } ) |
36 |
35
|
inteqd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∩ { 𝑥 ∈ On ∣ ( ( +no “ ( { 𝐴 } × 𝐵 ) ) ⊆ 𝑥 ∧ ( +no “ ( 𝐴 × { 𝐵 } ) ) ⊆ 𝑥 ) } = ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑦 ∈ 𝐵 ( 𝐴 +no 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑧 +no 𝐵 ) ∈ 𝑥 ) } ) |
37 |
1 36
|
eqtrd |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +no 𝐵 ) = ∩ { 𝑥 ∈ On ∣ ( ∀ 𝑦 ∈ 𝐵 ( 𝐴 +no 𝑦 ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝐴 ( 𝑧 +no 𝐵 ) ∈ 𝑥 ) } ) |