Metamath Proof Explorer


Theorem naddel2

Description: Ordinal less-than is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024)

Ref Expression
Assertion naddel2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴𝐵 ↔ ( 𝐶 +no 𝐴 ) ∈ ( 𝐶 +no 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 naddel1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴𝐵 ↔ ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ) )
2 naddcom ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 +no 𝐶 ) = ( 𝐶 +no 𝐴 ) )
3 2 3adant2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 +no 𝐶 ) = ( 𝐶 +no 𝐴 ) )
4 naddcom ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) = ( 𝐶 +no 𝐵 ) )
5 4 3adant1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) = ( 𝐶 +no 𝐵 ) )
6 3 5 eleq12d ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +no 𝐶 ) ∈ ( 𝐵 +no 𝐶 ) ↔ ( 𝐶 +no 𝐴 ) ∈ ( 𝐶 +no 𝐵 ) ) )
7 1 6 bitrd ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴𝐵 ↔ ( 𝐶 +no 𝐴 ) ∈ ( 𝐶 +no 𝐵 ) ) )