Metamath Proof Explorer


Theorem naddss1

Description: Ordinal less-than-or-equal is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024)

Ref Expression
Assertion naddss1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴𝐵 ↔ ( 𝐴 +no 𝐶 ) ⊆ ( 𝐵 +no 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 naddel1 ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵𝐴 ↔ ( 𝐵 +no 𝐶 ) ∈ ( 𝐴 +no 𝐶 ) ) )
2 1 3com12 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵𝐴 ↔ ( 𝐵 +no 𝐶 ) ∈ ( 𝐴 +no 𝐶 ) ) )
3 2 notbid ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ¬ 𝐵𝐴 ↔ ¬ ( 𝐵 +no 𝐶 ) ∈ ( 𝐴 +no 𝐶 ) ) )
4 ontri1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
5 4 3adant3 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
6 naddcl ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 +no 𝐶 ) ∈ On )
7 6 3adant2 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 +no 𝐶 ) ∈ On )
8 naddcl ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) ∈ On )
9 8 3adant1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) ∈ On )
10 ontri1 ( ( ( 𝐴 +no 𝐶 ) ∈ On ∧ ( 𝐵 +no 𝐶 ) ∈ On ) → ( ( 𝐴 +no 𝐶 ) ⊆ ( 𝐵 +no 𝐶 ) ↔ ¬ ( 𝐵 +no 𝐶 ) ∈ ( 𝐴 +no 𝐶 ) ) )
11 7 9 10 syl2anc ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +no 𝐶 ) ⊆ ( 𝐵 +no 𝐶 ) ↔ ¬ ( 𝐵 +no 𝐶 ) ∈ ( 𝐴 +no 𝐶 ) ) )
12 3 5 11 3bitr4d ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴𝐵 ↔ ( 𝐴 +no 𝐶 ) ⊆ ( 𝐵 +no 𝐶 ) ) )