Step |
Hyp |
Ref |
Expression |
1 |
|
naddel1 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐴 ↔ ( 𝐵 +no 𝐶 ) ∈ ( 𝐴 +no 𝐶 ) ) ) |
2 |
1
|
3com12 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∈ 𝐴 ↔ ( 𝐵 +no 𝐶 ) ∈ ( 𝐴 +no 𝐶 ) ) ) |
3 |
2
|
notbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ ( 𝐵 +no 𝐶 ) ∈ ( 𝐴 +no 𝐶 ) ) ) |
4 |
|
ontri1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
6 |
|
naddcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 +no 𝐶 ) ∈ On ) |
7 |
6
|
3adant2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 +no 𝐶 ) ∈ On ) |
8 |
|
naddcl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) ∈ On ) |
9 |
8
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 +no 𝐶 ) ∈ On ) |
10 |
|
ontri1 |
⊢ ( ( ( 𝐴 +no 𝐶 ) ∈ On ∧ ( 𝐵 +no 𝐶 ) ∈ On ) → ( ( 𝐴 +no 𝐶 ) ⊆ ( 𝐵 +no 𝐶 ) ↔ ¬ ( 𝐵 +no 𝐶 ) ∈ ( 𝐴 +no 𝐶 ) ) ) |
11 |
7 9 10
|
syl2anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 +no 𝐶 ) ⊆ ( 𝐵 +no 𝐶 ) ↔ ¬ ( 𝐵 +no 𝐶 ) ∈ ( 𝐴 +no 𝐶 ) ) ) |
12 |
3 5 11
|
3bitr4d |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 +no 𝐶 ) ⊆ ( 𝐵 +no 𝐶 ) ) ) |