| Step | Hyp | Ref | Expression | 
						
							| 1 |  | naddel1 | ⊢ ( ( 𝐵  ∈  On  ∧  𝐴  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐵  ∈  𝐴  ↔  ( 𝐵  +no  𝐶 )  ∈  ( 𝐴  +no  𝐶 ) ) ) | 
						
							| 2 | 1 | 3com12 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐵  ∈  𝐴  ↔  ( 𝐵  +no  𝐶 )  ∈  ( 𝐴  +no  𝐶 ) ) ) | 
						
							| 3 | 2 | notbid | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ¬  𝐵  ∈  𝐴  ↔  ¬  ( 𝐵  +no  𝐶 )  ∈  ( 𝐴  +no  𝐶 ) ) ) | 
						
							| 4 |  | ontri1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On )  →  ( 𝐴  ⊆  𝐵  ↔  ¬  𝐵  ∈  𝐴 ) ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐴  ⊆  𝐵  ↔  ¬  𝐵  ∈  𝐴 ) ) | 
						
							| 6 |  | naddcl | ⊢ ( ( 𝐴  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐴  +no  𝐶 )  ∈  On ) | 
						
							| 7 | 6 | 3adant2 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐴  +no  𝐶 )  ∈  On ) | 
						
							| 8 |  | naddcl | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐵  +no  𝐶 )  ∈  On ) | 
						
							| 9 | 8 | 3adant1 | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐵  +no  𝐶 )  ∈  On ) | 
						
							| 10 |  | ontri1 | ⊢ ( ( ( 𝐴  +no  𝐶 )  ∈  On  ∧  ( 𝐵  +no  𝐶 )  ∈  On )  →  ( ( 𝐴  +no  𝐶 )  ⊆  ( 𝐵  +no  𝐶 )  ↔  ¬  ( 𝐵  +no  𝐶 )  ∈  ( 𝐴  +no  𝐶 ) ) ) | 
						
							| 11 | 7 9 10 | syl2anc | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( ( 𝐴  +no  𝐶 )  ⊆  ( 𝐵  +no  𝐶 )  ↔  ¬  ( 𝐵  +no  𝐶 )  ∈  ( 𝐴  +no  𝐶 ) ) ) | 
						
							| 12 | 3 5 11 | 3bitr4d | ⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  On  ∧  𝐶  ∈  On )  →  ( 𝐴  ⊆  𝐵  ↔  ( 𝐴  +no  𝐶 )  ⊆  ( 𝐵  +no  𝐶 ) ) ) |