Step |
Hyp |
Ref |
Expression |
1 |
|
ssequn1 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) |
2 |
1
|
biimpi |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∪ 𝐵 ) = 𝐵 ) |
3 |
2
|
eleq1d |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
4 |
3
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
5 |
|
ontr2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |
6 |
5
|
3adant2 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |
7 |
6
|
expdimp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ∈ 𝐶 → 𝐴 ∈ 𝐶 ) ) |
8 |
7
|
pm4.71rd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) ) |
9 |
4 8
|
bitrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) ) |
10 |
|
ssequn2 |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐴 ) |
11 |
10
|
biimpi |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐴 ∪ 𝐵 ) = 𝐴 ) |
12 |
11
|
eleq1d |
⊢ ( 𝐵 ⊆ 𝐴 → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) |
14 |
|
ontr2 |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) ) |
15 |
14
|
3adant1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) ) |
16 |
15
|
expdimp |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐴 ∈ 𝐶 → 𝐵 ∈ 𝐶 ) ) |
17 |
16
|
pm4.71d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) ) |
18 |
13 17
|
bitrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) ) |
19 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
20 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
21 |
|
ordtri2or2 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
22 |
19 20 21
|
syl2an |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
23 |
22
|
3adant3 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
24 |
9 18 23
|
mpjaodan |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ∪ 𝐵 ) ∈ 𝐶 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) ) |