Step |
Hyp |
Ref |
Expression |
1 |
|
imaeqsex.1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ( 𝐹 “ 𝐵 ) 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∧ 𝜑 ) ) |
3 |
|
fvelimab |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑥 ∈ ( 𝐹 “ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ) ) |
4 |
3
|
anbi1d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∧ 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) ) |
5 |
4
|
exbidv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑥 ( 𝑥 ∈ ( 𝐹 “ 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) ) |
6 |
2 5
|
syl5bb |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐹 “ 𝐵 ) 𝜑 ↔ ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) ) |
7 |
|
rexcom4 |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) |
8 |
|
eqcom |
⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ↔ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) |
9 |
8
|
anbi1i |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) ∧ 𝜑 ) ) |
10 |
9
|
exbii |
⊢ ( ∃ 𝑥 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = ( 𝐹 ‘ 𝑦 ) ∧ 𝜑 ) ) |
11 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑦 ) ∈ V |
12 |
11 1
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = ( 𝐹 ‘ 𝑦 ) ∧ 𝜑 ) ↔ 𝜓 ) |
13 |
10 12
|
bitri |
⊢ ( ∃ 𝑥 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ 𝜓 ) |
14 |
13
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 𝜓 ) |
15 |
|
r19.41v |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) |
16 |
15
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ( ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ) |
17 |
7 14 16
|
3bitr3ri |
⊢ ( ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐵 ( 𝐹 ‘ 𝑦 ) = 𝑥 ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 𝜓 ) |
18 |
6 17
|
bitrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐹 “ 𝐵 ) 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |