Metamath Proof Explorer


Theorem imaeqsalv

Description: Substitute a function value into a universal quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024)

Ref Expression
Hypothesis imaeqsex.1 ( 𝑥 = ( 𝐹𝑦 ) → ( 𝜑𝜓 ) )
Assertion imaeqsalv ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( ∀ 𝑥 ∈ ( 𝐹𝐵 ) 𝜑 ↔ ∀ 𝑦𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 imaeqsex.1 ( 𝑥 = ( 𝐹𝑦 ) → ( 𝜑𝜓 ) )
2 1 notbid ( 𝑥 = ( 𝐹𝑦 ) → ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
3 2 imaeqsexv ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( ∃ 𝑥 ∈ ( 𝐹𝐵 ) ¬ 𝜑 ↔ ∃ 𝑦𝐵 ¬ 𝜓 ) )
4 3 notbid ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( ¬ ∃ 𝑥 ∈ ( 𝐹𝐵 ) ¬ 𝜑 ↔ ¬ ∃ 𝑦𝐵 ¬ 𝜓 ) )
5 dfral2 ( ∀ 𝑥 ∈ ( 𝐹𝐵 ) 𝜑 ↔ ¬ ∃ 𝑥 ∈ ( 𝐹𝐵 ) ¬ 𝜑 )
6 dfral2 ( ∀ 𝑦𝐵 𝜓 ↔ ¬ ∃ 𝑦𝐵 ¬ 𝜓 )
7 4 5 6 3bitr4g ( ( 𝐹 Fn 𝐴𝐵𝐴 ) → ( ∀ 𝑥 ∈ ( 𝐹𝐵 ) 𝜑 ↔ ∀ 𝑦𝐵 𝜓 ) )