Metamath Proof Explorer


Theorem imaeqsalv

Description: Substitute a function value into a universal quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024)

Ref Expression
Hypothesis imaeqsex.1
|- ( x = ( F ` y ) -> ( ph <-> ps ) )
Assertion imaeqsalv
|- ( ( F Fn A /\ B C_ A ) -> ( A. x e. ( F " B ) ph <-> A. y e. B ps ) )

Proof

Step Hyp Ref Expression
1 imaeqsex.1
 |-  ( x = ( F ` y ) -> ( ph <-> ps ) )
2 1 notbid
 |-  ( x = ( F ` y ) -> ( -. ph <-> -. ps ) )
3 2 imaeqsexv
 |-  ( ( F Fn A /\ B C_ A ) -> ( E. x e. ( F " B ) -. ph <-> E. y e. B -. ps ) )
4 3 notbid
 |-  ( ( F Fn A /\ B C_ A ) -> ( -. E. x e. ( F " B ) -. ph <-> -. E. y e. B -. ps ) )
5 dfral2
 |-  ( A. x e. ( F " B ) ph <-> -. E. x e. ( F " B ) -. ph )
6 dfral2
 |-  ( A. y e. B ps <-> -. E. y e. B -. ps )
7 4 5 6 3bitr4g
 |-  ( ( F Fn A /\ B C_ A ) -> ( A. x e. ( F " B ) ph <-> A. y e. B ps ) )