Metamath Proof Explorer


Theorem dfral2

Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997) Allow shortening of rexnal . (Revised by Wolf Lammen, 9-Dec-2019)

Ref Expression
Assertion dfral2
|- ( A. x e. A ph <-> -. E. x e. A -. ph )

Proof

Step Hyp Ref Expression
1 notnotb
 |-  ( ph <-> -. -. ph )
2 1 ralbii
 |-  ( A. x e. A ph <-> A. x e. A -. -. ph )
3 ralnex
 |-  ( A. x e. A -. -. ph <-> -. E. x e. A -. ph )
4 2 3 bitri
 |-  ( A. x e. A ph <-> -. E. x e. A -. ph )