Metamath Proof Explorer


Theorem nnuni

Description: The union of a finite ordinal is a finite ordinal. (Contributed by Scott Fenton, 17-Oct-2024)

Ref Expression
Assertion nnuni ( 𝐴 ∈ ω → 𝐴 ∈ ω )

Proof

Step Hyp Ref Expression
1 nn0suc ( 𝐴 ∈ ω → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) )
2 unieq ( 𝐴 = ∅ → 𝐴 = ∅ )
3 uni0 ∅ = ∅
4 2 3 eqtrdi ( 𝐴 = ∅ → 𝐴 = ∅ )
5 peano1 ∅ ∈ ω
6 4 5 eqeltrdi ( 𝐴 = ∅ → 𝐴 ∈ ω )
7 nnord ( 𝑥 ∈ ω → Ord 𝑥 )
8 ordunisuc ( Ord 𝑥 suc 𝑥 = 𝑥 )
9 7 8 syl ( 𝑥 ∈ ω → suc 𝑥 = 𝑥 )
10 id ( 𝑥 ∈ ω → 𝑥 ∈ ω )
11 9 10 eqeltrd ( 𝑥 ∈ ω → suc 𝑥 ∈ ω )
12 unieq ( 𝐴 = suc 𝑥 𝐴 = suc 𝑥 )
13 12 eleq1d ( 𝐴 = suc 𝑥 → ( 𝐴 ∈ ω ↔ suc 𝑥 ∈ ω ) )
14 11 13 syl5ibrcom ( 𝑥 ∈ ω → ( 𝐴 = suc 𝑥 𝐴 ∈ ω ) )
15 14 rexlimiv ( ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 𝐴 ∈ ω )
16 6 15 jaoi ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) → 𝐴 ∈ ω )
17 1 16 syl ( 𝐴 ∈ ω → 𝐴 ∈ ω )