| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0suc | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴  =  ∅  ∨  ∃ 𝑥  ∈  ω 𝐴  =  suc  𝑥 ) ) | 
						
							| 2 |  | unieq | ⊢ ( 𝐴  =  ∅  →  ∪  𝐴  =  ∪  ∅ ) | 
						
							| 3 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 4 | 2 3 | eqtrdi | ⊢ ( 𝐴  =  ∅  →  ∪  𝐴  =  ∅ ) | 
						
							| 5 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 6 | 4 5 | eqeltrdi | ⊢ ( 𝐴  =  ∅  →  ∪  𝐴  ∈  ω ) | 
						
							| 7 |  | nnord | ⊢ ( 𝑥  ∈  ω  →  Ord  𝑥 ) | 
						
							| 8 |  | ordunisuc | ⊢ ( Ord  𝑥  →  ∪  suc  𝑥  =  𝑥 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝑥  ∈  ω  →  ∪  suc  𝑥  =  𝑥 ) | 
						
							| 10 |  | id | ⊢ ( 𝑥  ∈  ω  →  𝑥  ∈  ω ) | 
						
							| 11 | 9 10 | eqeltrd | ⊢ ( 𝑥  ∈  ω  →  ∪  suc  𝑥  ∈  ω ) | 
						
							| 12 |  | unieq | ⊢ ( 𝐴  =  suc  𝑥  →  ∪  𝐴  =  ∪  suc  𝑥 ) | 
						
							| 13 | 12 | eleq1d | ⊢ ( 𝐴  =  suc  𝑥  →  ( ∪  𝐴  ∈  ω  ↔  ∪  suc  𝑥  ∈  ω ) ) | 
						
							| 14 | 11 13 | syl5ibrcom | ⊢ ( 𝑥  ∈  ω  →  ( 𝐴  =  suc  𝑥  →  ∪  𝐴  ∈  ω ) ) | 
						
							| 15 | 14 | rexlimiv | ⊢ ( ∃ 𝑥  ∈  ω 𝐴  =  suc  𝑥  →  ∪  𝐴  ∈  ω ) | 
						
							| 16 | 6 15 | jaoi | ⊢ ( ( 𝐴  =  ∅  ∨  ∃ 𝑥  ∈  ω 𝐴  =  suc  𝑥 )  →  ∪  𝐴  ∈  ω ) | 
						
							| 17 | 1 16 | syl | ⊢ ( 𝐴  ∈  ω  →  ∪  𝐴  ∈  ω ) |