Step |
Hyp |
Ref |
Expression |
1 |
|
nn0suc |
⊢ ( 𝐴 ∈ ω → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) ) |
2 |
|
unieq |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∪ ∅ ) |
3 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
4 |
2 3
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∅ ) |
5 |
|
peano1 |
⊢ ∅ ∈ ω |
6 |
4 5
|
eqeltrdi |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 ∈ ω ) |
7 |
|
nnord |
⊢ ( 𝑥 ∈ ω → Ord 𝑥 ) |
8 |
|
ordunisuc |
⊢ ( Ord 𝑥 → ∪ suc 𝑥 = 𝑥 ) |
9 |
7 8
|
syl |
⊢ ( 𝑥 ∈ ω → ∪ suc 𝑥 = 𝑥 ) |
10 |
|
id |
⊢ ( 𝑥 ∈ ω → 𝑥 ∈ ω ) |
11 |
9 10
|
eqeltrd |
⊢ ( 𝑥 ∈ ω → ∪ suc 𝑥 ∈ ω ) |
12 |
|
unieq |
⊢ ( 𝐴 = suc 𝑥 → ∪ 𝐴 = ∪ suc 𝑥 ) |
13 |
12
|
eleq1d |
⊢ ( 𝐴 = suc 𝑥 → ( ∪ 𝐴 ∈ ω ↔ ∪ suc 𝑥 ∈ ω ) ) |
14 |
11 13
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ω → ( 𝐴 = suc 𝑥 → ∪ 𝐴 ∈ ω ) ) |
15 |
14
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 → ∪ 𝐴 ∈ ω ) |
16 |
6 15
|
jaoi |
⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) → ∪ 𝐴 ∈ ω ) |
17 |
1 16
|
syl |
⊢ ( 𝐴 ∈ ω → ∪ 𝐴 ∈ ω ) |