| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0suc |
⊢ ( 𝐴 ∈ ω → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) ) |
| 2 |
|
unieq |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∪ ∅ ) |
| 3 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 4 |
2 3
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 = ∅ ) |
| 5 |
|
peano1 |
⊢ ∅ ∈ ω |
| 6 |
4 5
|
eqeltrdi |
⊢ ( 𝐴 = ∅ → ∪ 𝐴 ∈ ω ) |
| 7 |
|
nnord |
⊢ ( 𝑥 ∈ ω → Ord 𝑥 ) |
| 8 |
|
ordunisuc |
⊢ ( Ord 𝑥 → ∪ suc 𝑥 = 𝑥 ) |
| 9 |
7 8
|
syl |
⊢ ( 𝑥 ∈ ω → ∪ suc 𝑥 = 𝑥 ) |
| 10 |
|
id |
⊢ ( 𝑥 ∈ ω → 𝑥 ∈ ω ) |
| 11 |
9 10
|
eqeltrd |
⊢ ( 𝑥 ∈ ω → ∪ suc 𝑥 ∈ ω ) |
| 12 |
|
unieq |
⊢ ( 𝐴 = suc 𝑥 → ∪ 𝐴 = ∪ suc 𝑥 ) |
| 13 |
12
|
eleq1d |
⊢ ( 𝐴 = suc 𝑥 → ( ∪ 𝐴 ∈ ω ↔ ∪ suc 𝑥 ∈ ω ) ) |
| 14 |
11 13
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ω → ( 𝐴 = suc 𝑥 → ∪ 𝐴 ∈ ω ) ) |
| 15 |
14
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 → ∪ 𝐴 ∈ ω ) |
| 16 |
6 15
|
jaoi |
⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) → ∪ 𝐴 ∈ ω ) |
| 17 |
1 16
|
syl |
⊢ ( 𝐴 ∈ ω → ∪ 𝐴 ∈ ω ) |