Metamath Proof Explorer


Theorem nnuni

Description: The union of a finite ordinal is a finite ordinal. (Contributed by Scott Fenton, 17-Oct-2024)

Ref Expression
Assertion nnuni A ω A ω

Proof

Step Hyp Ref Expression
1 nn0suc A ω A = x ω A = suc x
2 unieq A = A =
3 uni0 =
4 2 3 eqtrdi A = A =
5 peano1 ω
6 4 5 eqeltrdi A = A ω
7 nnord x ω Ord x
8 ordunisuc Ord x suc x = x
9 7 8 syl x ω suc x = x
10 id x ω x ω
11 9 10 eqeltrd x ω suc x ω
12 unieq A = suc x A = suc x
13 12 eleq1d A = suc x A ω suc x ω
14 11 13 syl5ibrcom x ω A = suc x A ω
15 14 rexlimiv x ω A = suc x A ω
16 6 15 jaoi A = x ω A = suc x A ω
17 1 16 syl A ω A ω