Metamath Proof Explorer


Theorem elleft

Description: Membership in the left set of a surreal. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Assertion elleft ( 𝐴 ∈ ( L ‘ 𝐵 ) ↔ ( 𝐴 ∈ ( O ‘ ( bday 𝐵 ) ) ∧ 𝐴 <s 𝐵 ) )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝑥 = 𝐴 → ( 𝑥 <s 𝐵𝐴 <s 𝐵 ) )
2 leftval ( L ‘ 𝐵 ) = { 𝑥 ∈ ( O ‘ ( bday 𝐵 ) ) ∣ 𝑥 <s 𝐵 }
3 1 2 elrab2 ( 𝐴 ∈ ( L ‘ 𝐵 ) ↔ ( 𝐴 ∈ ( O ‘ ( bday 𝐵 ) ) ∧ 𝐴 <s 𝐵 ) )