Metamath Proof Explorer


Theorem elright

Description: Membership in the right set of a surreal. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Assertion elright ( 𝐴 ∈ ( R ‘ 𝐵 ) ↔ ( 𝐴 ∈ ( O ‘ ( bday 𝐵 ) ) ∧ 𝐵 <s 𝐴 ) )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑥 = 𝐴 → ( 𝐵 <s 𝑥𝐵 <s 𝐴 ) )
2 rightval ( R ‘ 𝐵 ) = { 𝑥 ∈ ( O ‘ ( bday 𝐵 ) ) ∣ 𝐵 <s 𝑥 }
3 1 2 elrab2 ( 𝐴 ∈ ( R ‘ 𝐵 ) ↔ ( 𝐴 ∈ ( O ‘ ( bday 𝐵 ) ) ∧ 𝐵 <s 𝐴 ) )