Metamath Proof Explorer


Theorem elright

Description: Membership in the right set of a surreal. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Assertion elright
|- ( A e. ( _Right ` B ) <-> ( A e. ( _Old ` ( bday ` B ) ) /\ B 

Proof

Step Hyp Ref Expression
1 breq2
 |-  ( x = A -> ( B  B 
2 rightval
 |-  ( _Right ` B ) = { x e. ( _Old ` ( bday ` B ) ) | B 
3 1 2 elrab2
 |-  ( A e. ( _Right ` B ) <-> ( A e. ( _Old ` ( bday ` B ) ) /\ B