Metamath Proof Explorer


Theorem elleft

Description: Membership in the left set of a surreal. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Assertion elleft A L B A Old bday B A < s B

Proof

Step Hyp Ref Expression
1 breq1 x = A x < s B A < s B
2 leftval L B = x Old bday B | x < s B
3 1 2 elrab2 A L B A Old bday B A < s B